По ту сторону кванта - [4]

Шрифт
Интервал

Однако относительная ценность таких сравнений, по-видимому, весьма невелика, поскольку для столь малых объектов само понятие размера теряет свой первичный смысл Поэтому лучше с самого начала оставить попытки представить себе подобные числа наглядно. Несмотря на свою чрезвычайную малость, числа эти не произвольны: важно понимать, что именно такие малые диаметры и массы нужно приписать атомам, чтобы свойства веществ, которые из этих атомов состоят, оказались именно такими, какими мы их наблюдаем в природе.

Лошмидт получил эти числа, изучая взаимную диффузию газов, то есть их способность смешиваться при соприкосновении. (С этим явлением все мы хорошо знакомы, хотя обычно и не вспоминаем о нем, когда нас вдруг остановит запах скошенной травы.) Лошмидт использовал при этом молекулярно-кинетическую гипотезу — предположение, что газы состоят не просто из молекул, но из движущихся молекул. С помощью формул кинетической теории газов он установил также среднее расстояние между молекулами в газе: оно оказалось примерно в 10 раз больше диаметра атомов.

Если газ превратить в жидкость, то его объем уменьшится приблизительно в тысячу раз, а значит, расстояния между атомами уменьшатся в 10 раз. Это означает, что в жидкости и в твердом теле атомы прижаты вплотную друг к другу. Вместе с тем они не перестают двигаться — просто их движение теперь стеснено и подчиняется другим законам, чем законы движения молекул газа.

ЛУЧИ

Железо, как и всякое вещество, состоит из атомов. Если один конец железного лома сунуть в печь, он, разумеется, начнет нагреваться. С точки зрения кинетической теории это означает, что атомы железа начнут двигаться быстрее (это можно обнаружить, коснувшись пальцами другого конца лома). Итак, теплота есть энергия движущихся атомов. Однако это далеко не все.

Нагревая лом, мы наблюдаем поразительное явление: с повышением температуры в печи постепенно меняется цвет нагретого железа: от вишнево-красного до ослепительно белого. Причем к лому теперь нельзя не только прикоснуться, но и просто подойти близко. Последнее уже непонятно, если пользоваться только представлением о движении атомов; действительно, мы не касались лома, атомы железа не ударялись о нашу руку — почему же нам стало жарко?

Здесь мы впервые сталкиваемся с положением, о котором предупреждали в самом начале. Мы должны ввести новое понятие, которое на первый взгляд никак не связано с идеей атома. Это понятие — излучение.

Мы говорим: лучи солнца осветили поляну. Значит, свет — это излучение. Но мы говорим также: греться в лучах солнца. Следовательно, и тепло может распространяться в виде лучей. Вообще с излучением мы имеем дело постоянно: когда сидим у костра, смотрим на закат, вращаем ручку настройки приемника или же делаем рентгеновский снимок грудной клетки. Все виды излучений: тепло, свет, радиоволны и рентгеновы лучи — различные проявления одного и того же электромагнитного излучения. Однако мы все-таки различаем виды излучений не только качественно и субъективно, но и строго количественно. По какому признаку? У электромагнитного излучения их много, но нам особенно важен сейчас один — его волновая природа.

Вероятно, в тысяче и одном учебнике свойства волны объяснены лучше и подробнее, чем мы это сделаем сейчас. Однако мы все-таки напомним их по той же самой причине, по которой даже в солидные академические словари иностранных слов помещают вполне понятные обиходные слова.

«Волна» — одно из самых необходимых слов физики.

Каждый представляет ее себе по-разному: один сразу же видит волны от брошенного в пруд камня, другой — синусоиду. Поскольку синусоиду рисовать проще — воспользуемся ею. У этой схематической волны четыре свойства: амплитуда А, длина волны — λ, частота ν и скорость распространения v.

Амплитуда волны — это наибольшая ее высота. Что такое длина волны — понятно из рисунка. А скорость распространения, по-видимому, особых пояснений не требует. Чтобы выяснить, что такое частота, проследим за движением волны в течение одной секунды.

За это время она пройдет расстояние v сантиметров (то есть ее скорость равна v см/сек). Подсчитав, сколько длин волн уместилось на этом отрезке, мы найдем частоту волны (или излучения): ν = v/λ.

Важнейшее свойство волн — их способность интерферировать. В чем его суть?

Допустите такую возможность: вы с силой бросаете горох в стену так, что он довольно далеко от нее отскакивает. Пусть вам удалось бросать его равномерно, скажем, так, чтобы на один квадратный сантиметр стены в 1 сек. попадало 8 горошин. Теперь мысленно в любом месте между вами и стеной выберите площадку в 1 см>2 и сосчитайте число горошин, пролетающих через нее в обе стороны. Ясно, что оно всегда будет равно 16.

А что будет, если от стены отразится волна?

Рассмотрим внимательно рисунок на следующей странице: вначале волна беспрепятственно распространяется вправо (А); затем она достигает стены и отражается (Б); но мы увидим не две отдельные волны, а результат сложения обеих волн: прямой и отраженной. Результат зависит от того, как волна соприкоснулась со стеной (В). Иногда она падает так неудачно, что полностью сама себя гасит (Г, Д). Именно такая способность волны гасить саму себя называется интерференцией. По этому признаку волну всегда можно безошибочно отличить от потока частиц.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.