По ту сторону кванта - [3]
Первое наглядное доказательство тому, что прав Демокрит, а не Аристотель, обнаружил шотландский ботаник Роберт Браун (1773–1858). В 1827 году это был уже немолодой директор ботанического отдела Британского музея. В юности он провел четыре года в экспедициях по Австралии и привез оттуда около 4 тысяч видов растений. Двадцать лет спустя он все еще продолжал изучать коллекции экспедиции. Летом 1827 года Браун обратил внимание на то, что мельчайшая пыльца растений произвольно двигается в воде под действием неизвестной силы. Он тут же опубликовал статью, заглавие которой очень характерно для той неторопливой эпохи: «Краткий отчет о микроскопических наблюдениях, проделанных в июне, июле и августе 1827 года над частицами, содержащимися в пыльце растений; и о существовании активных молекул в органических и неорганических телах».
Сначала его опыт вызвал недоумение. Это недоумение усугубил сам же Браун, пытаясь объяснить явление некой «живой силой», которая якобы присуща органическим молекулам. Естественно, такое прямолинейное объяснение «брауновского движения» не удовлетворило ученых, и они предприняли новые попытки для его изучения. Среди них особенно много сделали голландец Карбонэль (1880) и француз Гун (1888). Они поставили тщательные опыты и выяснили, что брауновское движение не зависит от внешних воздействий: времени года и суток, добавления солей, вида пыльцы и «…наблюдается одинаково хорошо ночью в деревне и днем вблизи многолюдной улицы, где проезжают тяжелые экипажи».
Надо сказать, что первое время странное движение не обратило на себя должного внимания. Большинство физиков о нем вообще не знало, а те, кто знал, считали его неинтересным, полагая, что это явление аналогично движению пылинок в солнечном луче. Лишь сорок лет спустя, вероятно, впервые оформилась та мысль, что видимые в микроскоп беспорядочные движения пыльцы растений вызваны случайными толчками маленьких, невидимых частиц жидкости. После работ Гун в этом убедились почти все. и гипотеза об атомах приобрела множество последователей.
Конечно, и до Брауна немало людей твердо верили, что все тела построены из атомов. Для них некоторые свойства атомов были очевидны уже без дальнейших исследований. В самом деле, все тела в природе, несмотря на огромные различия между собой, имеют вес и размеры. Очевидно, у их атомов также должны быть и вес и размеры. Именно эти их свойства положил в основу своих рассуждений Джон Дальтон (1766–1844) — скромный учитель математики и натуральной философии в городе Манчестере и великий ученый, определивший развитие химии примерно на сто лет.
У сторонников атомистики сразу же возникал вопрос: а не означает ли многообразие тел такого же многообразия атомов, как утверждал Демокрит? Оказалось, это неверно. Джон Дальтон, подробно исследуя химические реакции, в 1808 году впервые четко сформулировал понятие о химическом элементе: элемент — это вещество, которое состоит из атомов одного типа.
Выяснилось, что элементов не так уж много: в то время их знали около 40 (сейчас 104). Все остальные вещества построены из молекул — разнообразных сочетаний атомов. Сами атомы элементов также различаются между собой. Одно из таких различий нашли довольно быстро: им оказалась масса атома. Приняв за единицу атомный вес легчайшего газа — водорода, удалось через него выразить атомный вес остальных элементов. В этих единицах атомный вес кислорода равен 16, железа — 56 и т. д. Так з науку об атоме впервые проникли числа — событие важности необычайной.
Однако по-прежнему об абсолютных размерах и массах атомов ничего не было известно.
Одна из первых научных попыток оценить величину атомов принадлежит Михаилу Васильевичу Ломоносову (1711–1765). В 1742 году он заметил, что искусные ювелиры могут раскатать лист золота до толщины в одну десятитысячную долю сантиметра (10>-4 см), и, значит, атомы золота никак не могут превышать этой величины. В 1777 году Бенджамен Франклин (1706–1790) заметил, что ложка масла (ее объем равен примерно 5 см>3), вылитого на поверхность спокойной воды, растекается по ней на площади в 0,2 гектара, то есть 2 тыс. кв. м или 2 10>7 см>2.
Очевидно, что диаметр молекулы в этом случае не может превышать величину d = (5 см>3)/(2 10>7 см>2) = 2,5 • 10>-7 (то есть две десятимиллионные доли сантиметра).
Однако первой удавшейся попыткой оценить размер и массу атомов следует считать работу преподавателя физики Венского университета Иозефа Лошмидта (1821–1895). В 1865 году он нашел, что размеры всех атомов примерно одинаковы и равны 10>-8 см, а вес атома водорода составляет всего 10>-24 г.
Впервые мы встречаемся здесь с такими малыми величинами, и у нас просто нет необходимых навыков, чтобы их осмыслить. Самое большее, на что мы способны, это сказать: тонкий как волос, или легкий как пух. Но толщина волоса (10>-2 см) в миллион раз больше самого большого атома, а пуховая подушка — это уже нечто весомое и вполне реальное. Чтобы хоть как-то заполнить провал между здравым смыслом и малостью этих чисел, обычно все же прибегают к сравнению.
Если взять «атом арбуза», с упоминания о котором мы начали рассказ, и вишню диаметром в 1 см и одновременно их увеличивать, то в тот момент, когда вишня станет величиной с земной шар, «атом арбуза» начнет походить — и весом и величиной — на хороший арбуз.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.