По ту сторону кванта - [23]

Шрифт
Интервал

Знаменитый платино-иридиевый стержень с двумя рисками, отлитый по решению Конвента и хранящийся под стеклянным колпаком в Международном бюро мер и весов в Севре близ Парижа, оказался неравным в точности одной сорокамиллионной доле земного меридиана, как это вначале предполагали.

Французский академик Жак Бабине (1794–1872) был одним из первых, кто высказал сомнение в целесообразности такого выбора эталона длины и предложил принять за эталон длину волны какой-либо спектральной линии «…как величину, абсолютно неизменную и независимую даже от космических переворотов». Его предложение приняли только в 1958 году, когда был узаконен новый эталон метра: длина, на которой укладывается 1 650 763,73 длины волны оранжевой линии криптона Кr-86 в вакууме.

ЧТО СДЕЛАЛ РЕЗЕРФОРД?

В начале века мысли о планетарном строении атома не были такой редкостью, как это принято сейчас думать. Эти мысли открыто излагались даже на страницах учебников.

Для примера приведем несколько выдержек из III тома курса электричества, изданного в 1908 году профессором Парижского университета Г. Пелла:

«…атом не является неделимой частичкой материи. Испускание света, дающего спектральные линии, характерные для каждого рода атомов, указывает уже на разнородность атомов. Можно было бы предположить, что атом состоит из очень большого числа корпускул, которые притягиваются к какому-нибудь центру, как планеты притягиваются к Солнцу.

Для нейтральности атома необходимо, чтобы положительный электрический заряд, который, как мы предположили, находится в центре атома, был бы равен по абсолютной величине сумме отрицательных зарядов-корпускул, вращающихся вокруг него.

Словом все световые, электрические, тепловые и механические явления можно объяснить, допустив существование двух различных материй: корпускулы, или отрицательного электрона, и положительного электрона, о котором нам почти ничего не известно. Центральный положительный заряд атома состоит из совокупности положительных электронов, число которых изменяется в зависимости от рода атома, но остается вполне определенным для каждого рода атомов…

Лишнее было бы доказывать красоту этой теории, которая дает возможность объяснить все известные до сих пор явления и позволяет связать столько явлений и законов, не имевших, казалось, ничего общего между собой».

После этой цитаты многие разочаруются: Резерфорд не придумал ничего нового. Это обычное и частое заблуждение происходит от непонимания различий между наукой и натурфилософией. В науке действует строгое правило: открыл тот, кто доказал. А доказать что бы то ни было в науке можно лишь с помощью опытов и чисел.

Все прежние высказывания опирались на чистое умозрение и потому звучали примерно так: атом, вероятно, может иметь такую-то структуру. Только Резерфорд имел моральное право сказать: «Так должно быть. Я могу доказать это с числами в руках. И каждый, кто захочет, может проверить их, если повторит мои опыты».

«Сказать, оно конечно, все можно, а ты поди демонстрируй», любил повторять Менделеев. И эту разницу «между расплывчатой идеей и научным доказательством всегда следует помнить в частых спорах о приоритете, которые время от времени вспыхивают в истории науки. В таких случаях разумно считать создателями теорий не тех, кто их впервые высказал, а тех, чьи работы — в силу глубоких причин или случайных обстоятельств — оказали решающее влияние на последующее развитие науки. В этом есть элемент чисто человеческой несправедливости. Но история не мыслит категориями морали: ее задача не успокоение обид, а установление истинной последовательности причин и следствий.

СВЕТОВОЕ ДАВЛЕНИЕ

Гипотеза о световом давлении появилась уже во времена Кеплера, который выдвинул ее в 1619 году для объяснения происхождения и формы хвостов комет. О величине светового давления не было известно ничего и, как всегда в таких случаях, о нем рассказывали баснословные истории. Например, некто Гартзокер в 1696 году передавал рассказ путешественников, по словам которых «течение вод Дуная значительно медленнее утром, когда лучи Солнца противодействуют его движению, и ускоряется после полудня, когда лучи Солнца помогают его течению».

До конца прошлого века многочисленные попытки обнаружить световое давление экспериментально оканчивались полной неудачей. Причина этих неудач стала вполне ясной после теоретических работ Максвелла и успешных опытов Лебедева. Оказалось, что световое давление очень мало. Например, даже в ясный, безоблачный день давление солнечного луча на площадку в 1 кв. см не превышает 0,82 10>-10 г. Для сравнения напомним, что маковое зерно весит в миллион раз больше.

ГЛАВА ЧЕТВЕРТАЯ

До Бора — Атом Бора — После Бора — Формальная модель атома

В свое время почти каждый из нас грезил пиратами и фрегатами. В пылких мечтах мы переживали бои и погони, тайны острова сокровищ и подвиги благородства. Мы видели почти наяву, как по голубому морю, слегка накренившись, фрегаты бесшумно уходят за горизонт, оставляя за кормою пенный след. Иногда, чтобы увеличить скорость парусника, пираты шли на отчаянный шаг: они выбрасывали за борт балласт и лишь благодаря этому благополучно уходили от погони. Зачастую это им сходило с рук, но время от времени они бывали жестоко наказаны: фрегат, лишенный балласта, становился неустойчивым, как яичная скорлупа под парусами, и первый же шквал опрокидывал его вверх дном.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.