По ту сторону кванта - [22]

Шрифт
Интервал

гелия в день, то есть 5,32 10>-9 см>3/сек. После установления природы «α-частиц ничего чудесного в этом факте не было. Но Резерфорд на этом не остановился: он сосчитал число «α-частиц, которое вылетает в секунду из 1 г радия. Оно оказалось большим, но вполне определенным: 13,6 • 10>10 частиц/г • сек. Все эти «α-частицы, захватив по два электрона, превращаются в атомы гелия и занимают объем 5,32 • 10>-9 см>3. Следовательно, в 1 куб. см содержится

L = (13,6 10>10)/(5,3 • 10>-9) = 2,56 • 10>19 атомов.

Но ведь это и есть то самое число Лошмидта, которое он вычислил на основании молекулярно-кинетической гипотезы! Действительно, один грамм-атом гелия (как и любого газа) занимает объем 22,4 л и содержит 6,02 10>23 атомов, то есть в 1 см>3 помещается атомов

L = (6,02 10>23)/(22,4 • 10>3) = 2,69 • 10>19.

Совпадение убедительное.

Но человеку присуща необъяснимая потребность: прежде чем признать что-то окончательно, ему надо увидеть это что-то своими глазами. (Строго говоря, для этого нет никаких оснований: мы постоянно становимся жертвами оптических обманов). Эту любопытную потребность человеческого познания вполне удовлетворил в 1911 году Чарлз Томсон Рис Вильсон (1869–1959). После пятнадцати лет усилий он создал свою знаменитую камеру, которая позволяла проследить движение отдельных «α-частиц по туманным следам, которые они оставляли.

>Любопытство

Конечно, значение этого изобретения было не в том, что оно успокоило капризы человеческой психики, а в том, что в руках у физиков был теперь новый инструмент для исследования структуры атома.

Мы напомнили сейчас далеко не все опыты, которые в конечном итоге убедили всех: да, действительно, число N атомов в грамм-молекуле любого вещества хотя и очень велико, но конечно. Как и число людей на Земле, это число N не может быть дробным. Более того, число Авогадро N = 6,02497 10>23 мы знаем сейчас значительно точнее, чем число жителей Земли.

«Если бы в результате какой-то мировой катастрофы все накопленные научные знания вдруг оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это атомная гипотеза (можете называть ее не гипотезой, а фактом — это ничего не меняет): Все тела состоят из атомов — маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому.

В одной этой фразе содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения».

Эти слова принадлежат Ричарду Фейнману, нашему современнику, Нобелевскому лауреату 1965 года по физике. И хотя они почти дословно повторяют Демокрита, понятия и образы, которые мы с этими словами связываем теперь, совсем другие: за 25 столетий об атоме узнали много нового.

Это было не просто — просты только результаты науки, и они не зависят от личности исследователя — в этом их ценность.

ВОКРУГ КВАНТА

АТОМЫ И ПУСТОТА

Даже люди, легко гнущие подковы, признают, что атомы твердые: в детстве им ведь тоже приходилось расшибать коленки об углы. Поэтому очень трудно представить себе атом таким же пустым, как пространство между Землей и Солнцем, и в то же время необычайно устойчивым.

Известно, например, что вода останется водой даже под давлением в 10 тыс. атмосфер. Это очень большое давление: так примерно будет давить слон, если его поставить на площадку в 1 кв. см. Легко подсчитать, что при таком давлении на каждый атом действует сила примерно 10>-9 г, то есть в 100 миллионов миллионов (10>14) раз превышающая его собственный вес (10>-23 г). Это все равно как если бы на того же слона взгромоздить сотню Джомолунгм.

Все это удивительно, но не мешает атомам быть пустыми, поразительно пустыми: все ядра атомов, из которых построена Джомолунгма, можно упаковать в один мешок.

ДИФРАКЦИОННАЯ РЕШЕТКА

Неизвестно, как обернулась бы история атома, если бы физики не изобрели дифракционную решетку.

Ее использовал уже Фраунгофер; Ангстрем сделал ее главным инструментом своих исследований, и наконец Роулэнд придал ей почти современную форму. Принцип действия решетки основан на явлении дифракции, то есть на способности волн огибать препятствие, если оно сравнимо с их длиной. Волны различной длины огибают препятствие по-разному, что позволяет разделить их и точно измерить.

Благодаря этому прибору в спектроскопии достигнуты точности измерений, удивительные даже для физики. Уже в начале века удавалось разделить две линии в видимом спектре, если их длины волн отличались друг от друга хотя бы на 10>-3 Ǻ (сейчас точность повышена до 10>-4 Ǻ).

Чтобы наглядно представить себе точность подобных измерений, вообразите, что вы захотели измерить длину экватора с точностью до метра. Ясно, что в этой попытке нет нужды, да и особого смысла тоже, просто потому, что результат такого измерения будет зависеть от каждого муравейника на пути. Но в спектроскопии подобные усилия представляют не только спортивный интерес; и дальнейшая история атома убедительно это доказала — вопреки недоверию и насмешкам, которые эти усилия подчас сопровождали. Тому подтверждением — судьба эталона метра.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.