По ту сторону кванта - [20]

Шрифт
Интервал

вдвое ярче линии D>1.

Наш предыдущий опыт и знания о волнах подсказывают нам, что действие волн тем заметнее, чем больше их амплитуда. Чтобы убедиться в этом, достаточно выйти на берег моря во время шторма. Значит, увеличивая амплитуду, мы тем самым увеличиваем интенсивность лучей. Интенсивность излучения можно увеличить и по-другому: увеличивая число излучающих атомов. Поэтому, если вместо одной ртутной лампы взять две, три, десять, то интенсивность излучения возрастет во столько же раз. Естественно ожидать, что и энергия выбитых электронов вырастет в такой же пропорции.

Но энергия электронов оставалась прежней, менялось лишь число их.

Такова первая несообразность, которая ожидала ученых в конце опытов. Зато энергия зависела от частоты падающего излучения, и притом сильно.

Кварцевая лампа излучает фиолетовые и ультрафиолетовые лучи. Оказалось, что если вместо них на поверхность натрия направить пучок красных лучей, то электроны не вылетят вообще.

— Если излучение — волновой процесс (а это строго доказано), такого не может быть, — утверждали одни.

— Но ведь это происходит! — возражали другие.

Если бы несколько прибрежных утесов неожиданно обрушились на ваших глазах, почти наверное вы бы стали искать внешние причины такой катастрофы. Конечно, волны моря постепенно размывают берег, и время от времени утесы рушатся, но все знают, как редко это бывает. Но если, обернувшись к морю, вы обнаружите там военный корабль, который ведет по берегу пальбу из орудий главного калибра, вы сразу догадаетесь, что причина внезапных разрушений не волны, а снаряды, хотя их энергия и меньше, чем общая энергия морских волн. Однако энергия волн равномерно распределена по всему побережью, и нужны века, чтобы мы увидели результаты их ежедневной работы. По сравнению с этой работой энергия снаряда ничтожна, зато она сосредоточена в малом объеме и выделяется мгновенно. Если к тому же снаряд достаточно велик — он разрушит утес. Последнее важно: действительно, все свойства снаряда, кроме размеров, присущи и пуле, однако сокрушить скалу ей не под силу.

Примерно так рассуждал Эйнштейн, когда предложил свое объяснение явления фотоэффекта. Он знал об открытии Планка, но для него, с его непредвзятой манерой мышления, гипотеза о квантах света не казалась столь ужасной, как самому Планку. Поэтому он был первый, кто не только поверил в нее, но и применил для объяснения новых опытов. Эйнштейн утверждал: свет не только испускается квантами, как того требовала гипотеза Планка, но и распространяется так же — квантами. Поэтому свет, падающий на поверхность металла, подобен не морским волнам, а артиллерийским снарядам. Причем каждый такой снаряд-квант может выбить из атома только один электрон.

Согласно Планку (вспомните первую главу), энергия снаряда-кванта равна h ν. По мысли Эйнштейна, какая-то часть ее, назовем ее Р, расходуется на то, чтобы вырвать электрон из атома, а остальная часть — на то, чтобы разогнать его до скорости v, то есть сообщить ему кинетическую энергию (m v>2)/2. Оба эти утверждения можно коротко записать в виде простого уравнения:

h ν = P + (m v>2)/2.

Стоит принять эту гипотезу — и явление фотоэффекта проясняется. Действительно, пока размеры снарядов малы (красный свет), они не могут выбить электрон из атома (h ν P). Но по-прежнему энергия «снарядов-квантов» будет зависеть только от их величины (то есть от их частоты ν), а не их числа.

Шестнадцать лет спустя глубокую простоту уравнения Эйнштейна Шведская академия наук отметила Нобелевской премией. Но в 1905 году, когда уравнение было написано впервые, на него нападали все, даже Планк. Он любил Эйнштейна и потому, убеждая прусское министерство просвещения пригласить его на работу в Берлин, просил «…не слишком сильно ставить ему в упрек» гипотезу относительно явлений фотоэффекта.

Планка можно понять: только что вопреки общепринятым традициям и своему желанию он ввел в физику квант действия h. Лишь постепенно приходило к нему сознание неизбежности этого шага. Даже в 1909 году он признавался Эйнштейну: «Я еще плохо верю в реальность световых квант». Однако дело было сделано: «…Планк посадил в ухо физикам блоху», — говорил Эйнштейн двадцать лет спустя, и она не давала им покоя, хотя они и пытались ее не замечать. Во всяком случае, Планк постарался ввести квант действия так, чтобы не пострадала волновая оптика — здание чрезвычайной красоты, созданное в течение двух столетий. Поэтому согласно Планку свет только испускается квантами, но распространяется по-прежнему как волна; только в этом случае удавалось сохранить все результаты волновой оптики.

А Эйнштейн поступал так, как будто до него вообще не существовало физики или, по крайней мере, как человек, ничего не знающий об истинной природе света. Здесь сказалась замечательная особенность Эйнштейна: в совершенстве владея логикой, он больше доверял интуиции и фактам. Для него не было случайных фактов в физике. Поэтому в явлениях фотоэффекта он видел не досадное исключение из правил волновой оптики, а сигнал природы о существовании еще неизвестных, но глубоких законов.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.