По ту сторону кванта - [19]
ν = cR[(1/n>2)- (1/k>2)].
Здесь: с — скорость света, n и k — знакомые нам целые числа, а число R = 109677,576 см>-1 называется с тех пор «постоянной Ридберга» для атома водорода. Полагая в этой формуле n = 2, можно вычислить всю серию Бальмера, измеренную впоследствии вплоть до k = 31.
Тогда же возникла мысль записывать частоту ν в виде разности двух чисел-термов Т>n и T>k:
ν = ((cR)/n>2) — ((cR)/k>2) = Т>n — T>k.
Пока что в такой записи не видно глубокого смысла, да и особых преимуществ тоже. Однако в 1908 году молодой, рано умерший швейцарский ученый Вальтер Ритц (1878–1909) объяснил преимущества такой формы записи. Продолжая работы Ридберга, он сформулировал так называемый комбинационный принцип: частоту ν произвольной линии в спектре любого атома можно представить как разность двух термов Т>n и T>k:
ν>nk = Т>n — T>k.
даже в том случае, когда отдельный терм Т>n уже нельзя записать в таком простом виде, как для атома водорода.
На первый взгляд в этом нет никакого выигрыша: просто от набора частот мы перешли к набору термов. Однако это не так: попытайтесь прочесть книгу, в которой нет промежутков между словами, и вы сразу почувствуете разницу. Особенно если эта книга на неизвестном языке. Кроме того, чисел стало значительно меньше: чтобы определить частоты 50 линий водорода, которые были известны в начале века, достаточно знать десяток термов.
Неожиданно в хаосе чисел обнаружилась система. Беспорядочный набор линий распался на серии. В непонятной книге стали различать отдельные слова. В простейшем случае — в атоме водорода — удалось разглядеть даже буквы, из которых они составлены. Однако смысл слов и происхождение букв по-прежнему оставались неизвестными: иероглифы еще не заговорили, хотя и не казались теперь столь загадочными.
Стремление осмыслить структуру спектра и в самом деле напоминало попытку почти вслепую расшифровать незнакомый текст. Утомительная работа длилась больше четверти века, и отсутствие общей идеи отталкивало от нее многие глубокие умы. Необходимо было найти ключ к шифру.
Это сделал Нильс Бор в 1913 году.
КВАНТЫ
Излучение возникает внутри атома, однако, покинув его, существует независимо. Иногда оно состоит из волн одинаковой длины — такое излучение называют монохроматическим. Линейчатый спектр атома состоит из набора монохроматических лучей, и наборы эти различны для разных атомов.
До сих пор нас большей частью интересовала только одна характеристика волн — их частота ν. Однако лучи — сложное явление, и свойства их нельзя свести только к частоте излучения. Солнечный луч прозрачен, но вполне материален — он даже имеет вес: каждую минуту на квадратный сантиметр поверхности Земли падает 2 10>-15 г света. На первый взгляд неощутимо мало, но это означает, что за год на нашу планету падает 80 тысяч тонн солнечных лучей. Эти тонны лучей осуществляют круговорот веществ в природе, так что в конечном итоге вся жизнь на Земле возможна только под Солнцем.
Действие излучения легче всего сопоставлять с морскими волнами, набегающими на берег: после работ Христиана Гюйгенса (1629–1695) и Огюстена Жана Френеля (1788–1827) такая аналогия стала бесспорной. Каждый год приносил новые этому доказательства в явлениях интерференции и дифракции света. В 1873 году Джемс Клерк Максвелл (1831–1879) теоретически; предсказал, что свет, падая на поверхность тел, должен оказывать на них давление (также в полном согласии с нашей аналогией). Световое давление — очень тонкий эффект, но Петр Николаевич Лебедев (1866–1912) в 1899 году все-таки обнаружил его экспериментально. Казалось, теперь волновая природа света доказана настолько надежно, что всякие дальнейшие опыты для ее проверки не имеют смысла.
К счастью, опыты в физике ставят не только для проверки теорий. И в то время, когда Лебедев завершал свой знаменитый эксперимент, уже существовал другой, столь же тщательный, но более непонятный. В 1887 году Генрих Рудольф Герц (1857–1894) (тот самый, который доказал волновую природу электромагнитного излучения и тем самым справедливость всей электродинамики Максвелла) обнаружил явление, впоследствии названное фотоэффектом. Суть его в следующем.
Если свет ртутной лампы (теперь мы такие лампы называем кварцевыми) направить на металл натрий, то с поверхности его полетят электроны.
В конце века большая часть физиков уже ясно сознавала, что атом сложен, и потому само по себе это явление никого не удивило. Довольно быстро все согласились с тем, что электроны в опыте Герца вылетают из атомов натрия под действием излучения кварцевой лампы.
Странно и непонятно было другое — законы этого явления. Установлены они были Филиппом Ленардом (1862–1947) и Александром Григорьевичем Стрлетовым (1839–1896) на рубеже XX века. Эти ученые измеряли число выбитых электронов и их скорость в зависимости от интенсивности и частоты падающего излучения.
Мы уже знаем, что лучи, возникающие внутри атомов, различаются между собой не только длиной волны А (или что то же, частотой ν), но также интенсивностью. Это ясно видно на спектрограммах: некоторые линии там значительно ярче других, например в желтом дублете натрия линия D
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.