Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - [15]

Шрифт
Интервал

(1) ожидает, что второй параметр будет передан по ссылке, но конструктор >std::thread(2) не знает об этом: он не в курсе того, каковы типы аргументов, ожидаемых функцией, и просто слепо копирует переданные значения. Поэтому функции >update_data_for_widget будет передана ссылка на внутреннюю копию >data, а не на сам объект >data. Следовательно, по завершении потока от обновлений ничего не останется, так как внутренние копии переданных аргументов уничтожаются, и функция >process_widget_data получит не обновленные данные, а исходный объект >data(3). Для читателя, знакомого с механизмом >std::bind, решение очевидно: нужно обернуть аргументы, которые должны быть ссылками, объектом >std::ref. В данном случае, если мы напишем

>std::thread t(update_data_for_widget, w, std::ref(data));

то функции >update_data_for_widget будет правильно передана ссылка на >data, а не копия data.

Если вы знакомы с >std::bind, то семантика передачи параметров вряд ли вызовет удивление, потому что работа конструктора >std::thread и функции >std::bind определяется в терминах одного и того же механизма. Это, в частности, означает, что в качестве функции можно передавать указатель на функцию-член при условии, что в первом аргументе передается указатель на правильный объект:

>class X {

>public:

> void do_lengthy_work();

>};


>X my_x;

>std::thread t(&X::do_lengthy_work, &my_x); ←(1)

Здесь мы вызываем >my_x.do_lengthy_work() в новом потоке, поскольку в качестве указателя на объект передан адрес >my_x(1). Так вызванной функции-члену можно передавать и аргументы: третий аргумент конструктора >std::thread  станет первым аргументом функции-члена и т.д.

Еще один интересный сценарий возникает, когда передаваемые аргументы нельзя копировать, а можно только перемещать: данные, хранившиеся в одном объекте, переносятся в другой, а исходный объект остается «пустым». Примером может служить класс >std::unique_ptr, который обеспечивает автоматическое управление памятью для динамически выделенных объектов. В каждый момент времени на данный объект может указывать только один экземпляр >std::unique_ptr, и, когда этот экземпляр уничтожается, объект, на который он указывает, удаляется. Перемещающий конструктор и перемещающий оператор присваивания позволяют передавать владение объектом от одного экземпляра >std::unique_ptr другому (о семантике перемещения см. приложение А, раздел А.1.1). После такой передачи в исходном экземпляре остается указатель NULL. Подобное перемещение значений дает возможность передавать такие объекты в качестве параметров функций или возвращать из функций. Если исходный объект временный, то перемещение производится автоматически, а если это именованное значение, то передачу владения следует запрашивать явно, вызывая функцию >std::move(). В примере ниже показано применение функции >std::move для передачи владения динамическим объектом потоку:

>void process_big_object(std::unique_ptr);


>std::unique_ptr p(new big_object);

>p->prepare_data(42);

>std::thread t(process_big_object,std::move(p));

Поскольку мы указали при вызове конструктора >std::thread функцию >std::move, то владение объектом >big_object передается объекту во внутренней памяти вновь созданного потока, а затем функции >process_big_object.

В стандартной библиотеке Thread Library есть несколько классов с такой же семантикой владения, как у >std::unique_ptr, и >std::thread — один из них. Правда, экземпляры >std::thread не владеют динамическими объектами, как >std::unique_ptr, зато они владеют ресурсами: каждый экземпляр отвечает за управление потоком выполнения. Это владение можно передавать от одного экземпляра другому, поскольку экземпляры >std::threadперемещаемые, хотя и не копируемые. Тем самым гарантируется, что в каждый момент времени с данным потоком будет связан только один объект, но в то же время программист вправе передавать владение от одного объекта другому

2.3. Передача владения потоком

Предположим, что требуется написать функцию для создания потока, который должен работать в фоновом режиме, но при этом мы не хотим ждать его завершения, а хотим, чтобы владение новым потоком было передано вызывающей функции. Или требуется сделать обратное — создать поток и передать владение им некоторой функции, которая будет ждать его завершения. В обоих случаях требуется передать владение из одного места в другое.

Именно здесь и оказывается полезной поддержка классом >std::thread семантики перемещения. В предыдущем разделе отмечалось, что в стандартной библиотеке С++ есть много типов, владеющих ресурсами, например >std::ifstream и >std::unique_ptr, которые являются перемещаемыми, но не копируемыми, и один из них — >std::thread. Это означает, что владение потоком можно передавать от одного экземпляра >std::thread другому, как показано в примере ниже. В нем создается два потока выполнения, владение которыми передается между тремя объектами >std::thread: >t1, >t2 и >t3.

>void some_function();

>void some_other_function();


>std::thread t1(some_function);         ←(1)

>std::thread t2 = std::move(t1);        ←(2)

>t1 = std::thread(some_other_function); ←


Еще от автора Энтони Д Уильямс
Викиномика. Как массовое сотрудничество изменяет всё

Это знаменитый бестселлер, который научит вас использовать власть массового сотрудничества и покажет, как применять викиномику в вашем бизнесе. Переведенная более чем на двадцать языков и неоднократно номинированная на звание лучшей бизнес-книги, "Викиномика" стала обязательным чтением для деловых людей во всем мире. Она разъясняет, как массовое сотрудничество происходит не только на сайтах Wikipedia и YouTube, но и в традиционных компаниях, использующих технологии для того, чтобы вдохнуть новую жизнь в свои предприятия.Дон Тапскотт и Энтони Уильямс раскрывают принципы викиномики и рассказывают потрясающие истории о том, как массы людей (как за деньги, так и добровольно) создают новости, изучают геном человека, создают ремиксы любимой музыки, находят лекарства от болезней, редактируют школьные учебники, изобретают новую косметику, пишут программное обеспечение и даже строят мотоциклы.Знания, ресурсы и вычислительные способности миллиардов людей самоорганизуются и превращаются в новую значительную коллективную силу, действующую согласованно и управляемую с помощью блогов, вики, чатов, сетей равноправных партнеров и личные трансляции.


Рекомендуем почитать
Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Pro Git

Разработчику часто требуется много сторонних инструментов, чтобы создавать и поддерживать проект. Система Git — один из таких инструментов и используется для контроля промежуточных версий вашего приложения, позволяя вам исправлять ошибки, откатывать к старой версии, разрабатывать проект в команде и сливать его потом. В книге вы узнаете об основах работы с Git: установка, ключевые команды, gitHub и многое другое.В книге рассматриваются следующие темы:основы Git;ветвление в Git;Git на сервере;распределённый Git;GitHub;инструменты Git;настройка Git;Git и другие системы контроля версий.


Java 7

Рассмотрено все необходимое для разработки, компиляции, отладки и запуска приложений Java. Изложены практические приемы использования как традиционных, так и новейших конструкций объектно-ориентированного языка Java, графической библиотеки классов Swing, расширенной библиотеки Java 2D, работа со звуком, печать, способы русификации программ. Приведено полное описание нововведений Java SE 7: двоичная запись чисел, строковые варианты разветвлений, "ромбовидный оператор", NIO2, новые средства многопоточности и др.


Фундаментальные алгоритмы и структуры данных в Delphi

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.


Как пасти котов. Наставление для программистов, руководящих другими программистами

«Как пасти котов» – это книга о лидерстве и руководстве, о том, как первое совмещать со вторым. Это, если хотите, словарь трудных случаев управления IT-проектами. Программист подобен кошке, которая гуляет сама по себе. Так уж исторически сложилось. Именно поэтому так непросто быть руководителем команды разработчиков. Даже если вы еще месяц назад были блестящим и дисциплинированным программистом и вдруг оказались в роли менеджера, вряд ли вы знаете, с чего надо начать, какой выбрать стиль руководства, как нанимать и увольнять сотрудников, проводить совещания, добиваться своевременного выполнения задач.