От водорода до …? - [89]
Старший «брат»
Предпоследним в списке «родственников» большой семьи лантанидов является элемент иттербий. Довольно полная характеристика иттербия, как и некоторых его «родственников», может быть дана в нескольких словах: открыт в 1878 г. швейцарским химиком Ж. Ш. Мариньяком как примесь к элементу эрбию.
Однако иттербий оказался смесью двух лантанидов, которые в 1907 г. были разделены французским химиком Ж. Урбеном и независимо от него Ауэром. Одному из них было оставлено прежнее название. Среди прочих лантанидов иттербий отличается низкой температурой кипения — 1800 °C. В противоположность большинству представителей лантанидов, способных частично выделяться из своих хлористых соединений в результате действия на них водорода при 800 °C (причем легкость выделения возрастает в семействе лантанидов от первого их члена к последнему), иттербий в свободном состоянии не выделен. Так же ведут себя самарий и европий.
Практического применения не имеет из-за чрезвычайной редкости.
Последний из семейства лантанидов
О последнем элементе из семейства лантанидов, так же как и о некоторых других, много не скажешь. В отличие от всех лантанидов, а также и большинства других элементов периодической системы Д. И. Менделеева, он имеет два названия: лютеций и Кассиопей. Лютеций — древнее название Парижа, а точнее, главного города кельтского племени — паризиев — на р. Сене. В честь него французский химик Ж. Урбен и назвал новый элемент, открытый им в 1907 г. Одновременно новый элемент нашел К. Ауэр — австрийский ученый — и назвал его кассиопеем по имени одного из наиболее ярких, незаходящих созвездий Северного неба Кассиопеи. Этот элемент находится в монацитовом песке.
От своих «родственников» отличается наименьшим атомным радиусом, наибольшей плотностью (9,74) и температурой плавления (1659–1750 °C). В металлическом виде лютеций не получен еще до сих пор. Соединения лютеция применения пока не находят: В немецкой литературе элемент называют кассиопеем и ныне, а химики других государств узаконили название лютеций.
Спутник циркония
Серебро и золото, хотя и не химически чистые, видел каждый. Но спросите у кого-нибудь о гафнии, и большинство ответит, что ни гафния, ни его соединений они не видели. А между тем атомов гафния в природе в 25 раз больше, чем серебра, и в 1000 раз больше, чем золота. В чем же дело, почему мы не сталкиваемся с гафнием? Ответ очень простой: гафний — элемент весьма распыленный. Пригодные для промышленной переработки месторождения имеются в немногих пунктах земного шара.
В 1922 г. Ж. Урбен после многолетних работ с «редкими землями» выделил новый элемент. В честь населявших некогда территорию современной Франции древних племен, кельтов, новый элемент был назван кельтием. Выяснилось, что химические свойства нового элемента не соответствовали тем, которые он должен был иметь, соответственно месту в периодической системе элементов — 72. Исходя из периодического закона Д. И. Менделеева, химик Г. Хевеши и физик Д. Костер, отыскивая аналог циркония, естественно, искали его в минералах, заключающих последний. И действительно, в первом же минерале, подвергнутом исследованию, — норвежском цирконите — они открыли новый элемент с помощью излучения рентгеновского спектра (1923 г.). В честь древнего названия столицы Дании — Гафниа — открытый элемент назвали гафнием. Впоследствии было установлено, что гафний всегда сопутствует цирконию не только в естественных минералах, но и различных искусственно полученных препаратах. Кельтий же оказался смесью уже известных элементов редкоземельной группы. Трудность выделения гафния из природных соединений является причиной, ограничивающей его практическое использование.
Сходство химических свойств гафния и циркония и в связи с этим трудность их разделения обусловлены тем, что радиусы ионов циркония и гафния практически равны.
Гафний в два раза тяжелее циркония, плавится при более высокой температуре (2230 °C), чем цирконий. Не менее интересен такой ряд температур плавления: окись гафния — 2912°, борид гафния — 3250°, нитрид гафния — 3310 °C, карбид гафния — 3890 °C; именно поэтому нитриды тугоплавких металлов, в том числе гафния, представляют основу жаропрочных сплавов, высокотемпературных огнеупоров, твердых материалов, сплавов радио- и электротехнического назначения (болометров, резисторов, термокатодов).
Металл хирургов
Тантал в греческой мифологии — любимый сын Зевса. Будучи на правах любимца Зевса допущенным к трапезам богов, Тантал возгордился этим и, пригласив богов к себе на пир, подал им в виде угощения мясо собственного сына Пелопа, желая проверить их всеведение. За это преступление Тантал был наказан голодом и жаждой. Он был «заточен» в пруд, где стоял по горло в воде, под деревом, ветви которого свисали и гнулись под тяжестью спелых плодов. Всякий раз, когда Тантал, томимый жаждой, открывал рот, чтобы напиться, вода утекала от него; когда, мучимый голодом, он поднимал руку, чтобы сорвать плод, ветка с плодами уклонялась в сторону. Так древний миф описывал «танталовы муки».
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.