От водорода до …? - [87]
Несколько лет назад о гадолинии можно было сказать только «не находит применения», и это соответствовало бы истине. Но после первых исследований его свойств обнаружились такие возможности применения, которые открывают необъятные просторы для использования его в технике. Прежде всего перспективное применение гадолиния в виде сплавов для изготовления регулирующих стержней в ядерных реакторах. Величина поперечного захвата у гадолиния очень велика — в 18 раз превышает таковую для кадмия (2500 барн), широко применяемого для регулирования работы атомных реакторов.
До сих пор атомные реакторы, эти мощнейшие источники нейтронного излучения, изолируются многометровыми бетонными стенами, которые можно легко воздвигнуть на земле. Но представить самолет с двигателем весом в одну тысячу тонн пока невозможно. Совсем иной будет картина при наличии больших количеств гадолиния: лист толщиной в несколько сантиметров станет достаточной защитой, и проект автомобиля с атомным двигателем перейдет из рук автора фантастических романов в руки конструктора, механика, токаря, химика, физика.
Однако получение гадолиния в чистом виде трудоемко и стоимость его высока (1 кг окиси гадолиния стоит в США 6000 долларов, такое же количество золота — 1100).
Есть еще одна область техники, тесно связанная с нашим бытом, в которой гадолиний «обещает» совершить настоящую революцию — это получение холода. Теоретическую основу будущих холодильных аппаратов составляют магнитные свойства гадолиния. Соединения гадолиния (сернокислый или хлористый гадолиний), являясь сильно парамагнитными веществами, применяются в научных исследованиях для получения сверхнизких температур. Это достигается довольно оригинальным способом. Соль гадолиния, находящаяся в хорошо изолированном пространстве, заполненном инертным газом, помещается в магнитное поле, в результате соль нагревается, а от нее нагревается газ. Затем газ откачивается, магнитное поле удаляется и соль, таким образом, охлаждается до температуры ниже начальной. Многократное повторение этого цикла ведет к снижению температуры, которая может достигнуть величин, весьма близких к абсолютному нулю.
Младший «брат»
В 1787 г. возле шведского городка Иттерби был найден минерал, содержащий редкоземельные элементы. При исследовании этого минерала была выделена окись, которую некоторое время принимали за индивидуальное однородное вещество, за окись одного элемента. Затем выяснилось, что эта «редкая земля» содержит несколько элементов из семейства лантанидов. Первым из них был выделен элемент (как оказалось затем) с нечетным номером 65, два других имели четные номера и были выделены в порядке их следования сначала с номером 68, а затем — 70. Большое значение в их открытии сыграл спектральный анализ. Все они, как «родные братья», получили названия от городка, вблизи которого находилась их родина. Однако, чтобы не было путаницы, их названия сделали несколько отличными одно от другого. Иттербий — имя старшего «брата» (70), имя тербий получил младший «брат» (65), имя среднего (68) — эрбий.
Тербий, открытый Мозандером, — второй в числе семейства лантанидов — отличается от остальных своих близких и дальних «родственников» малой распространенностью в природе.
До настоящего времени тербий применения, даже самого ограниченного, не находит.
Радиоактивный изотоп тербия — тербий-160 используется в качестве радиоактивного индикатора в аналитической химии при изучении процессов одновременного осаждения трудно разделимых смесей лантанидов и других элементов.
Труднодоступный
Пожалуй, самое примечательное в «биографии» этого элемента — его название: диспрозий, «диспрозитос» — по-гречески «труднодоступный».
Лекок-де-Буабодран в 1886 г. характеризовал элемент: редкий, распылен по земному шару, трудно отделим от других «рядовых» лантанидов.
История диспрозия связана с теми «элементами», которые в разное время были «открыты», получили название, а затем «закрывались», так как представляли либо смесь элементов, либо ошибку анализа. Но в этой смеси всегда находился диспрозий.
Магнитные свойства диспрозия и его соединений открывают ему пути в радиотехнику и электронику.
Неприменяемый
Гольм — слово, которое на всех германских наречиях служит для обозначения прибрежных островов. Окончание этого слова входит в многочисленные названия портовых и прибрежных городов, в частности и в название столицы Швеции — Стокгольм.
В честь латинского названия шведской столицы — Гольмиа — шведский химик П. Клеве произвел «имя» открытого им в 1879 г. нового элемента, оказавшегося из семьи лантанидов.
Независимо от Клеве гольмий был открыт в 1878 г. швейцарским химиком Соре.
Гольмий — один из редчайших лантанидов, находится в монацитовом песке и некоторых других минералах. Присутствует всегда с другими членами этого семейства, от которых с величайшим трудом отделяется после буквально многотысячных перекристаллизаций.
О применении в чистом виде говорить не приходится: его не применяют из-за чрезвычайной трудности получения и связанной с этим исключительно высокой стоимости.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.