Неопределенный электрический объект. Ампер. Классическая электродинамика. - [27]

Шрифт
Интервал

РИС. 4

На подвижный проводник СО влияет неподвижный проводник АВ, который является частью конструкции CDFE, вращающейся на оси ХУ. Отдельная часть EF укреплена на Х и У, на небольших емкостях, заполненных ртутью, позволяющих электрическому току циркулировать по ХCDY вне зависимости от наклона конструкции. Противовес GH позволяет приподнять центр тяжести достаточным образом для того, чтобы получить измеряемые углы, хотя силы, влияющие на СО, невелики.


ЗАКОН БИО — САВАРА

После открытия Эрстеда Био и Ампер разработали план исследований. Ученые основывались на разных принципах, но объединяла их общая цель: найти математическое отношение между электрическим током, пропускаемым через проводник, и магнитным полем, которое он производит. Подход Био отличался от подхода Ампера тем, что первый использовал элементарные магниты. Био полагал, что проводник состоит из множества маленьких магнитов, и хотел рассчитать силу, производимую всеми ими в совокупности. Над разработкой математического закона Био работал вместе со своим коллегой по Коллеж де Франс французским физиком Феликсом Саваром (1791-1841). Коллеги разработали метод измерения силы, оказываемой проводником на магнит. Они опирались на опыты Кулона, в которых измерялось колебание магнитной стрелки. В конце октября 1820 года Био заявил Академии наук, что сила воздействия проводника на магнит обратно пропорциональна расстоянию между ними. Свой математический закон он обнародовал в декабре.

Био стремился сформулировать математический закон, описывающий магнитное поле, создаваемое прямолинейным проводником NH в точке М, где находится магнитная стрелка (см. рисунок 5). На рисунке Био проводник NH разрезан на микроскопические поперечные витки (см. рисунок 6). Каждый из них испытывает временное намагничивание своих молекул, которые образуют магнитные стрелки ab, а'b' и так далее.

Био объявил Академии наук о полученных результатах 30 октября: сила воздействия, оказываемого проводником бесконечной длины на полюс магнита, обратно пропорциональна расстоянию МН, отделяющему магнит от проводника. Дополнения, внесенные Лапласом, позволили установить, что один виток катушки N оказывает воздействие, пропорциональное

sincω/r²

РИС. 5

Стрелка показывает направление электрического тока, проходящего через проводник NH. Био попытался обнаружить магнитное действие этого проводника на магнит, расположенный в точке М.

РИС. 6

Схематическое изображение магнитных витков Био.


Это и есть математический закон, представленный Био Академии наук 18 декабря. Очевидно, что закон обратных квадратов очень напоминает закон всемирного тяготения Ньютона и закон электростатического взаимодействия Кулона. Однако между ними есть существенная разница: сила, производимая одним витком катушки N на М, направлена не по линии NM, а перпендикулярно прямой, соединяющей две точки. Современное математическое выражение закона Био — Савара, также называемого законом Лапласа, имеет вид

dB = μ>0/4∙(I∙ds∙sinω)/r².

Это уравнение является современной версией закона Био — Савара, поскольку в него добавлено магнитное поле В. dB означает дифференциальный элемент магнитного поля, то есть эффект, оказываемый одним витком проводника (дифференциальная поверхность ds). через который проходит электрический ток I, на магнит, расположенный в точке на расстоянии r, а линия от магнита до дифференциального элемента образует угол со с проводником. Общий эффект равен суммарному значению всех дифференциальных элементов dB, то есть это выражение необходимо проинтегрировать. Ампер не переставал считать исходную гипотезу Био о том, что проводник является магнитом, произвольным допущением. Однако и Био считал необоснованным предположение Ампера о том, что молекулярные токи создают магниты. На самом деле формулу Био и идею Ампера объединяет общее положение: если заменить воздействие магнита на электрический ток, то можно наблюдать притягивание между двумя параллельными проводниками, представленными в опыте Ампера. Закон электродинамики Ампера позволяет нам понять эту связь с законом Био — Савара, несмотря на различие исходных гипотез.


ЗАКОН ЭЛЕКТРОДИНАМИКИ АМПЕРА

Учитывая блестящую репутацию Ампера в области математики, становится ясным, что он не удовольствовался своей догадкой по поводу электродинамического происхождения магнетизма. В его понимании задача ученого состояла в том, чтобы открыть общий закон, связывающий разные, на первый взгляд, явления. Ампер многие месяцы искал этот закон и долгие годы готовил публикацию окончательных результатов, которая состоялась в 1826 году и стала итогом его исследований. Эта работа чрезвычайно сложная, но мы считаем необходимым сделать краткий обзор изложенных в ней идей.

Если Био разделял проводник на бесконечно маленькие витки, каждый из которых представлял собой магнит, то Ампер использовал бесконечно малую длину dl, которая представляла собой электрический ток. Он пытался обнаружить взаимодействие между двумя элементами бесконечно малого тока, а не между током и магнитом. Представим, что в точках

Имя Ампера, выгравированное на Эйфелевой башне рядом с именем Лавуазье.


Еще от автора Эугенио Мануэль Фернандес Агиляр
Эврика! Радость открытия. Архимед. Закон Архимеда

Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя.


Рекомендуем почитать
Октябрьские дни в Сокольническом районе

В книге собраны воспоминания революционеров, принимавших участие в московском восстании 1917 года.


Тоска небывалой весны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Прометей, том 10

Прометей. (Историко-биографический альманах серии «Жизнь замечательных людей») Том десятый Издательство ЦК ВЛКСМ «Молодая гвардия» Москва 1974 Очередной выпуск историко-биографического альманаха «Прометей» посвящён Александру Сергеевичу Пушкину. В книгу вошли очерки, рассказывающие о жизненном пути великого поэта, об истории возникновения некоторых его стихотворений. Среди авторов альманаха выступают известные советские пушкинисты. Научный редактор и составитель Т. Г. Цявловская Редакционная коллегия: М.


Дебюсси

Непокорный вольнодумец, презревший легкий путь к успеху, Клод Дебюсси на протяжении всей жизни (1862–1918) подвергался самой жесткой критике. Композитор постоянно искал новые гармонии и ритмы, стремился посредством музыки выразить ощущения и образы. Большой почитатель импрессионистов, он черпал вдохновение в искусстве и литературе, кроме того, его не оставляла равнодушным восточная и испанская музыка. В своих произведениях он сумел освободиться от романтической традиции и влияния музыкального наследия Вагнера, произвел революционный переворот во французской музыке и занял особое место среди французских композиторов.


Еретичка, ставшая святой. Две жизни Жанны д’Арк

Монография посвящена одной из ключевых фигур во французской национальной истории, а также в истории западноевропейского Средневековья в целом — Жанне д’Арк. Впервые в мировой историографии речь идет об изучении становления мифа о святой Орлеанской Деве на протяжении почти пяти веков: с момента ее появления на исторической сцене в 1429 г. вплоть до рубежа XIX–XX вв. Исследование процесса превращения Жанны д’Арк в национальную святую, сочетавшего в себе ее «реальную» и мифологизированную истории, призвано раскрыть как особенности политической культуры Западной Европы конца Средневековья и Нового времени, так и становление понятия святости в XV–XIX вв. Работа основана на большом корпусе источников: материалах судебных процессов, трактатах теологов и юристов, хрониках XV в.


Фернандель. Мастера зарубежного киноискусства

Для фронтисписа использован дружеский шарж художника В. Корячкина. Автор выражает благодарность И. Н. Янушевской, без помощи которой не было бы этой книги.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.