Неопределенный электрический объект. Ампер. Классическая электродинамика. - [25]
Жан-Батист Био родился в Париже в 1774 году и умер там же в 1862-м. В 1800 году он стал профессором физики в Коллеж де Франс, а в 1803 — членом Академии наук. Этот современник и коллега Ампера придерживался своих собственных идей. Несмотря на свое несогласие с электрической природой магнитных явлений, Био вошел в историю науки вместе с французским физиком Феликсом Саваром (1791-1841) как автор закона Био — Савара, описывающего магнитное поле, порождаемое постоянным электрическим током.
Изучение электромагнетизма было лишь одним из научных интересов Био, также он занимался поляризованным светом и был одним из первых ученых, изучавших метеориты. Эта область привлекла его после того, как в апреле 1803 года в городе Легль Нижней Нормандии упали 3000 фрагментов метеорита. Жители города видели вспышку света и распад небесного тела на множество фрагментов. Био был уполномочен изучить странное явление и в результате работы пришел к следующему заключению: камни имели внеземное происхождение. В то время подобные утверждения встречались с некоторым скептицизмом, однако работы Био проложили дорогу научному изучению метеоритов. Остатки метеорита, обнаруженные в Легле, были хондритами и позволили ученым понять происхождение Солнечной системы. Число Био, обозначаемое Bi, было придумано в честь ученого и выражает теплообмен между поверхностью тела и окружающей средой.
Памятная открытка с изображением полета Био и Гей-Люссака на аэростате в 1804 году, предпринятого в целях изучения земной атмосферы.
Для этого плоскость круга с делениями располагается перпендикулярно к магнитному меридиану места, и земной магнетизм не может воздействовать на стрелку.
Благодаря астатической стрелке Ампер смог изобрести новый прибор, который назвал гальванометром:
«Не хватало инструмента, который позволял бы определить наличие тока в стержне или проводнике, а также его энергию и направление. Теперь этот инструмент существует; [...] это прибор, похожий на компас, отличающийся от него использованием [...]. Полагаю, ему нужно дать название гальванометра».
РИС.З
Астатическая стрелка Ампера в «Представлении новых открытий в электричестве и магнетизме» (1822).
В XIX веке изучение электромагнетизма было новой областью науки. В терминологии царила большая путаница, большинство определений нуждались в уточнении. Даже Ампер говорил об энергии тока, всегда имея в виду его силу. Угол отклонения стрелки мог показывать силу электрического тока, но нужно было определить его направление. Ученый произвольно выбрал направление движения положительных зарядов для определения критерия направления тока, а также выработал правило определения отклонения стрелки: «Если мысленно расположиться человеку вдоль проводника с током так, чтобы ток проходил по направлению от ног наблюдателя к голове и чтобы лицо его было обращено к магнитной стрелке, то под влиянием тока северный полюс магнитной стрелки всегда будет отклоняться влево». Это же правило он использовал и для Земли.
РИС. 4
В рукописях Ампера есть рисунок, иллюстрирующий «правило Ампера» (см. рисунок 4). На нем изображено, как действуют электрические токи на наблюдателя, если представить его внутри земного шара. Круг представляет собой земной шар, его магнитные полюса N (Северный) и S (Южный) связаны земным меридианом. Наблюдателя (от ног до головы) пересекает электрический ток (представленный частично), циркулирующий вдоль экватора. Нужно представить наблюдателя лежащим и смотрящим на находящийся над ним компас. Его левая рука указывает направление, в которое отклонится северный полюс компаса под действием тока, то есть N (Северный) полюс Земли.
Гипотеза молекулярных токов Ампера имеет ощутимые отголоски в сегодняшней физике. В 1820 году электроны (элементарные отрицательно заряженные частицы) были неизвестны, еще меньше знали о квантовой физике. Сегодня свойства магнетизма касаются двух аспектов.
1. Орбитальное движение электронов вокруг ядра.
2. Квантовое свойство, называемое спином.
Честь открытия электрона принадлежит британскому ученому Джозефу Джону Томсону (1856-1940). Оно состоялось во время проведения им в 1896 году опыта с катодными лучами. Таким образом, понадобилось почти 80 лет для открытия частиц, связанных с амперовскими токами, хотя электродинамика уже прочно утвердилась в науке. Кроме того, немецкий физик Ральф Крониг (1904-1995) ввел в 1925 году понятие спина, и это стало следующим шагом в понимании постоянных магнитов. Новые знания, полученные в течение двух веков после появления гипотезы Ампера, позволили классифицировать виды магнитных материалов, выделив диамагнитные и ферромагнитные. Более глубокое исследование этой классификации выходит за рамки данной книги.
Ампер придумал название «гальванометр» в честь итальянского ученого Гальвани. Гальванометр — это инструмент для определения и измерения электрического тока. С этой точки зрения прибор, сконструированный Ампером, не был гальванометром в строгом смысле слова, потому что он не измерял абсолютное значение электрического тока. Мы могли бы назвать «гальваноскопом» астатическую стрелку Ампера — устройство, определяющее лишь наличие электрического тока. Гальванометр называется амперметром, если он параллельно подключен к сопротивлению для очень точного измерения силы тока. По общему правилу, амперметр должен быть последовательно включен в электрическую цепь, хотя эту проблему можно решить с помощью токоизмерительных клещей. Их действие напоминает об исследованиях электромагнетизма, проводившихся во времена Ампера.
Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя.
Сумасшедшая, веселая, протестная, агрессивная автобиография отца британского панка Джонни Лайдона. Солист легендарной панк-группы Sex Pistols, более известный как Роттен, рассказывает полную историю своей жизни, начиная с неблагополучного детства и заканчивая годами рассвета в статусе настоящей иконы панка и культового явления в музыке, культуре и моде. Почему Роттен ненавидел Нэнси Спанжен, презирал Вивьен Вествуд, а к Сиду Вишесу относился как к ребенку? Чего Sex Pistols стоило постоянно играть с огнем и ходить по самой грани допустимого, оставаясь в топе рейтингов и под прицелом вездесущих медиа? Обо всем этом в первой автобиографии легенды.
Автор этой книги, Д. В. Павлов, 30 лет находился на постах наркома и министра торговли СССР и РСФСР, министра пищевой промышленности СССР, а в годы Отечественной войны был начальником Главного управления продовольственного снабжения Красной Армии. В книге повествуется о многих важных событиях из истории нашей страны, очевидцем и участником которых был автор, о героических днях блокады Ленинграда, о сложностях решения экономических проблем в мирные и военные годы. В книге много ярких эпизодов, интересных рассказов о видных деятелях партии и государства, ученых, общественных деятелях.
Непокорный вольнодумец, презревший легкий путь к успеху, Клод Дебюсси на протяжении всей жизни (1862–1918) подвергался самой жесткой критике. Композитор постоянно искал новые гармонии и ритмы, стремился посредством музыки выразить ощущения и образы. Большой почитатель импрессионистов, он черпал вдохновение в искусстве и литературе, кроме того, его не оставляла равнодушным восточная и испанская музыка. В своих произведениях он сумел освободиться от романтической традиции и влияния музыкального наследия Вагнера, произвел революционный переворот во французской музыке и занял особое место среди французских композиторов.
Монография посвящена одной из ключевых фигур во французской национальной истории, а также в истории западноевропейского Средневековья в целом — Жанне д’Арк. Впервые в мировой историографии речь идет об изучении становления мифа о святой Орлеанской Деве на протяжении почти пяти веков: с момента ее появления на исторической сцене в 1429 г. вплоть до рубежа XIX–XX вв. Исследование процесса превращения Жанны д’Арк в национальную святую, сочетавшего в себе ее «реальную» и мифологизированную истории, призвано раскрыть как особенности политической культуры Западной Европы конца Средневековья и Нового времени, так и становление понятия святости в XV–XIX вв. Работа основана на большом корпусе источников: материалах судебных процессов, трактатах теологов и юристов, хрониках XV в.
Скрижали Завета сообщают о многом. Не сообщают о том, что Исайя Берлин в Фонтанном дому имел беседу с Анной Андреевной. Также не сообщают: Сэлинджер был аутистом. Нам бы так – «прочь этот мир». И башмаком о трибуну Никита Сергеевич стукал не напрасно – ведь душа болит. Вот и дошли до главного – болит душа. Болеет, следовательно, вырастает душа. Не сказать метастазами, но через Еврейское слово, сказанное Найманом, питерским евреем, московским выкрестом, космополитом, чем не Скрижали этого времени. Иных не написано.
Для фронтисписа использован дружеский шарж художника В. Корячкина. Автор выражает благодарность И. Н. Янушевской, без помощи которой не было бы этой книги.
Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.
Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.
Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.
Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.