Математика в занимательных рассказах - [28]
Возникает вопрос: нельзя ли идти дальше и объединить эти два типичных расположения — схем I и II? Это было бы возможно, если бы одно из них переводилось каким-нибудь образом в другое. Тогда обе серии расположений естественно слились бы в одну. Сопоставляя друг с другом расположения схем I и II, можно строго доказать (не станем входить здесь в подробности), что положения эти не могут быть превращены одно в другое никаким числом передвижений. Это — огонь и вода. Поэтому все огромное число размещений шашек распадается на две разобщенные серии: 1) на те, которые могут быть переведены в «нормальное» схемы I: это — положения разрешимые; 2) на те, которые могут быть переведены в положение схемы II и, следовательно, ни при каких обстоятельствах не переводятся в «нормальное» конечное расположение: это — положения неразрешимые, те именно, за разрешение которых тщетно назначались огромные премии.
Но как узнать, принадлежит ли заданное расположение к первой или второй серии? Пример разъяснит это.
Рассмотрим представленное здесь расположение.
Первый ряд шашек в порядке, как и второй, за исключением последней шашки (9). Эта шашка занимает место, которое в «нормальном» расположении принадлежит 8. Шашка 9 стоит, значит, «ранее» шашки 8; такое упреждение нормального порядка будем называть «инверсией». О шашке 9 мы скажем: здесь имеет место «одна инверсия». Рассматривая дальнейшие шашки, обнаруживаем упреждение для шашки 14; она поставлена на три места (шашек 12, 13, 11) ранее своего нормального положения; здесь у нас 3 инверсии (14 ранее 12; 14 ранее 13; 14 ранее 11). Всего мы насчитали уже 1 + 3 = 4 инверсии. Далее шашка 12 помещена ранее шашки 11, и точно так же шашка 13 — ранее шашки 11. Это дает еще 2 инверсии. Итого имеем, таким образом, 6 инверсий. Подобным образом для каждого заданного расположения устанавливают «общее число инверсий», освободив предварительно последнее место в правом нижнем углу. Если общее число инверсий, как в рассмотренном случае, четное, то заданное расположение может быть приведено к «нормальному» конечному; другими словами, оно принадлежит к разрешимым. Если же число инверсий нечетное, то данное расположение принадлежит ко второй серии, т. е. к неразрешимым.
За недостатком места мы должны отказаться от строгого доказательства всего изложенного. Но можно наметить кратко главные этапы в ходе этого доказательства. Среди ходов будем различать «горизонтальные» и «вертикальные» (смысл этих слов, конечно, ясен). Легко видеть, что всякий «вертикальный» ход изменяет число инверсий либо на 1, либо на 3, т. е. на нечетное число. Чтобы одно положение шашек перевести в какое-либо другое, необходимо сделать h горизонтальных и v вертикальных ходов, причем — если в обоих положениях свободное поле находится в правом нижнем углу — оба числа, h и v, четные. Горизонтальные ходы не могут изменить инверсий, вертикальные же изменяют их каждый раз на нечетное число, т. е. в общем итоге — так как v число четное — на четное число. Вот почему для переводимости двух расположений (в которых пустое поле находится в правом нижнем углу) одного в другое необходимо, чтобы они различались между собою четным числом инверсий. Это условие взаимного перевода является притом не только необходимым, но, очевидно, также и достаточным. — «Нормальное» расположение имеет 0 инверсий, и, следовательно, ему соответствует серия положений с четным числом инверсий (при условии, что свободное поле на одном и том же месте). Расположение II имеет одну инверсию, — его серия есть серия нечетных инверсий.
Поучительной в этой игре является и ее история. При своем появлении игра вызвала всюду, как мы уже рассказывали, сильнейшее, прямо лихорадочное возбуждение и породила настоящую манию игры. С этой лихорадкой удалось справиться только математике. И удалось ей это так полно, что в наши дни подобная страстность в этой игре уже совершенно немыслима. Победа достигнута была благодаря тому, что математика создала исчерпывающую теорию игры, теорию, не оставляющую в ней ни одного сомнительного пункта и превратившую ее в образчик настоящей математической игры. Исход игры зависит здесь не от каких-либо случайностей и даже не от исключительной находчивости, как в других играх, а от чисто математических факторов, предопределяющих исход с безусловной достоверностью.[37]
Примечание редактора
Иллюстрация, приведенная в начале этой статьи, помещена в любопытной книге Сэма Лойда «Энциклопедия головоломок» (Нью-Йорк, 1914). Это большой том, заключающий 5000 разнообразных задач и развлечений, из которых тысяча иллюстрирована. Рисунок интересующей нас игры сопровождается следующим текстом.
«Давнишние обитатели царства смекалки помнят, как в начале 70-х годов я заставил весь мир ломать голову над коробкой с подвижными шашками, получившей известность под именем „игры в 14–15“. Пятнадцать шашек были размещены в квадратной коробочке в правильном порядке, и только шашки 14-я и 15-я были переставлены, как показано на прилагаемой иллюстрации. Задача состояла в том, чтобы, последовательно передвигая шашки, привести их в исходное положение, причем, однако, порядок шашек 14-й и 15-й должен быть исправлен.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Одно из лучших классических пособий по физике.Занимательные рассказы, поучительные опыты, интересные факты научат любознательного читателя замечать простейшие физические явления и понимать их природу.
«Научные фокусы и загадки» — это увлекательная коллекция хитрых вопросов, занимательных задач, интересных загадок, головоломок, фокусов и игр. Эта книга для веселых, находчивых и сообразительных читателей!