Математика. Утрата определенности. - [64]

Шрифт
Интервал

Европейцам пришлось столкнуться и с проблемой отрицательных чисел. Эти числа стали известны в Европе из арабских текстов, но большинство математиков XVI-XVII вв. не считали отрицательные числа «настоящими» или утверждали, что отрицательные числа не могут быть корнями уравнений. Никола Шюке [1445(?)-1500(?)] в XV в. и Штифель в XVI в. заявляли, что отрицательные числа лишены всякого смысла. Кардано включал отрицательные величины в число корней рассматриваемых им уравнений, но полагал, что отрицательные корни — это просто символы, не имеющие реального смысла. Отрицательные корни уравнений Кардано называл фиктивными и противопоставлял их действительным, т.е. положительным, корням. Виет полностью отвергал отрицательные числа. Декарт принимал их лишь с определенными оговорками. Отрицательные корни уравнений Декарт называл ложными на том основании, что они якобы представляют числа, которые меньше, чем ничто. Однако Декарту удалось показать, как, исходя из любого уравнения, можно построить другое уравнение, корни которого больше корней исходного на любую заданную величину. Тем самым Декарт указал способ, позволяющий преобразовать уравнение с отрицательными корнями в уравнение с положительными корнями. «Фиктивные» корни при таком преобразовании переходили в действительные, и поэтому Декарт неохотно смирился с отрицательными числами, но сомнения и тревоги так и не оставили его.{70} Паскаль считал, например, вычитание числа 4 из 0 операцией, лишенной всякого смысла. В «Мыслях» Паскаля есть выразительное признание: «Я знаю людей, которые никак не могут понять, что если из нуля вычесть четыре, то получится нуль».

Интересный довод против отрицательных чисел выдвинул близкий друг Паскаля теолог и математик Антуан Арно (1612-1697). Арно усомнился в том, что −1:1 = 1:−1. Как может выполняться такое равенство, спрашивал он, если −1 меньше, чем 1? Ведь меньшее число не может относиться к большему так же, как большее к меньшему. Лейбниц, признав правильность возражения Арно, указал, что такого рода пропорции вполне допустимо использовать в вычислениях, ибо по форме они правильны, и сравнил действия, производимые над отрицательными числами, с действиями, производимыми над мнимыми величинами, введенными незадолго до этого. Тем не менее Лейбниц затемнил существо дела, предложив называть мнимыми (несуществующими) все величины, не имеющие логарифма. По мнению Лейбница, число −1 не существует, так как положительные логарифмы соответствуют числам, большим 1, а отрицательные логарифмы (!) соответствуют числам, заключенным между 0 и 1. Следовательно, для отрицательных чисел логарифмов просто «не хватает». Действительно, если бы нашлось какое-нибудь число, соответствующее log(−1), то половина его, как следует из теории логарифмов, соответствовала бы log√−1, a √−1 заведомо не имеет логарифма.

Одним из первых алгебраистов, умышленно не переносившим отрицательный коэффициент в другую часть уравнения, был Томас Гарриот (1560-1621). Однако он отвергал отрицательные корни и даже «доказал» в своем сочинении «Практические аналитические искусства» (Artis analyticae praxis, 1631), опубликованном уже после его смерти, что отрицательные корни не существуют. Ясные и четкие определения отрицательных чисел дал Рафаэль Бомбелли (XVI в.), хотя ему и не удалось обосновать правила действий над отрицательными числами, поскольку в то время отсутствовала логическая основа, необходимая для обоснования положительных чисел.{71} Стевин рассматривал уравнения с положительными и отрицательными коэффициентами и считал отрицательные корни вполне допустимыми. В своем сочинении «Новое изобретение в алгебре» (Invention nouvelle en algèbre, 1629) Альбер Жирар (1595-1632) не проводил никакого различия между отрицательными и положительными числами и указывал оба корня квадратного уравнения, даже если они были отрицательными. И Жирар, и Гарриот употребляли один и тот же знак «минус» для обозначения как операции вычитания, так и отрицательных чисел, хотя следовало бы ввести два отдельных символа, поскольку отрицательное число — независимое понятие, в то время как вычитание — одна из четырех арифметических операций.

В целом можно сказать, что немногие математики XVI-XVII вв. свободно обращались с отрицательными числами или легко восприняли их введение, большинство заведомо не признавали отрицательные числа «настоящими» корнями алгебраических уравнений. По поводу отрицательных чисел среди математиков бытовали самые нелепые предрассудки. Так, Валлис, придерживавшийся прогрессивных для своего времени взглядов и не отвергавший отрицательных чисел, был убежден в том, что отрицательные числа больше, чем бесконечность, и в то же время меньше нуля. В своей «Арифметике бесконечно малых» (Arithmetica infinitorum, 1655) Валлис доказывал, что поскольку отношение a/0 при положительном a обращается в бесконечность, то, когда знаменатель становится отрицательным (отношение a/b с отрицательным b), отношение должно стать больше, чем a/0, так как отрицательный знаменатель меньше нуля. Следовательно, заключал Валлис, отрицательные числа должны быть больше, чем бесконечность.


Еще от автора Морис Клайн
Математика. Поиск истины.

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.


Рекомендуем почитать
Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


Путеводитель для влюбленных в математику

Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.