Математика. Считаем уверенно - [2]
Остальные прячутся кто куда может. Далее водящий идет искать. Если он увидел кого-то из игроков, то должен добежать до дерева, где он находился, когда считал, и сказать: «Чур, Вовка, – за сараем». Игрок, который успеет добежать до заветного дерева и «выручиться» раньше, чем «застукал» водящий, «выручается». Стуча по дереву три раза, он должен успеть произнести фразу: «Палочка-выручалочка, выручи меня». тогда в следующем коне будет «водить» последний «застуканный». Однако «последний» игрок хоть и рискует многим, но и имеет большие привилегии. Если он «выручается» сам, он может произнести (стукнув по дереву три раза!): «Палочка-выручалочка, за меня и за всех». И тогда он выручил всех игроков, и «водить» опять должен тот, кто водил в прошлом коне.
Вот такие правила самой распространенной в детстве игры. Знаете ли вы их? возможно, в вашей компании они были несколько иными – ведь существует множество вариантов. Например – «Двенадцать палочек».
«Двенадцать палочек»
Положили двенадцать палочек на импровизированный рычажок, эдакие мини-качели, стукнули ногой, они разлетелись в разные стороны, и пока водящий их собирает, спрятались.
Далее сюжет развивается по сценарию игры в «Прятки». Пусть небольшое, а разнообразие. И правила усвоить нетрудно, и играющим интереснее.
«Двенадцать палочек» гораздо сложнее обычных «Пряток»: сначала надо найти двенадцать дощечек, потом уложить их на «весы», с силой ударить по ним, чтобы палочки разлетелись как можно дальше, потому что, пока водящий будет их собирать, игроки должны успеть спрятаться. К тому же есть шанс снова «разбить палочки» и заставить водящего опять их собрать, если ты настолько смел и быстр, что сумеешь подлететь к ним в то время, когда водящий в поисках игроков потерял из виду «весы».
Такие игры учат не только силе, ловкости, но и благородству.
«А где здесь математическое мышление?» – спросите вы. А откуда вы знаете, где оно может быть спрятано? Поверьте, оно спрятано именно здесь, в этих самых банальных и самых известных детям играх!
Ну что же? Раз, два, три, четыре, пять – мы идем искать?
Сначала попробуем ответить на следующие вопросы:
• из каких же составляющих состоит математическое мышление? И причем здесь детские игры?
• почему одним математическое мышление «дано», а другим «не дано»?
• почему, в конце концов, математика легче дается мальчикам, чем девочкам?
• чем отличаются «гуманитарии» от «технарей»?
А начнем мы искать ответ в близкой нам и любимой науке – нейропсихологии. И, недолго думая, сразу же обращаемся к мнению основоположника нейропсихологии – Александра Романовича Лурии о математическом мышлении.
«Известно, что операции с числами лишь относительно поздно приобрели отвлеченный характер; своими корнями они уходят в геометрию и еще сейчас в значительной мере продолжают сохранять свернутый пространственный характер. на первом этапе числа и счетные операции носят еще наглядно-действенный характер и предполагают размещение элементов во внешнем (пространственном) поле; лишь постепенно эти операции свертываются и заменяются наглядно-образным, а затем арифметическим мышлением. Однако и на этих стадиях представление числа и счетные операции продолжают сохранять пространственные компоненты. Достаточно сказать, что, даже овладев десятичной системой, ребенок еще продолжает располагать ее элементы в известной пространственной схеме, в которой отдельные числа занимают свое место». (А. Р. Лурия, 1973).
Итак, одной из необходимых для овладения понятиями числа и счетных операций функцией считаются пространственные представления, которые проходят постепенный путь развития в онтогенезе.
Сначала ребенком осваивается схема собственного тела и происходит формирование пространственных представлений по вертикали: «выше», «ниже», «за», «перед», «над», «под», «между» и др.; по горизонтали: «право-лево», «правее», «левее», «слева от.», «справа от.», «левее, чем.», «правее, чем.», «ближе к.», «дальше от.», «перед», «за», «ближе, чем.», «дальше, чем.» и др. Все эти объекты воспринимаются по отношению к собственному телу (выше меня, ниже меня, за мной, передо мной, между мной и деревом).
Затем формируется анализ взаимоотношений между собой объектов, окружающих ребенка. Он начинает понимать, что дерево выше куста, а лес, например, находится ближе к дому, чем река.
Потом происходит формирование пространственных представлений на более высоком уровне: оптико-пространственных и квазипространственных функций (Сунцова А. В., Курдюкова С. В., 2008). Это представления о времени, понимание логико-грамматических конструкций (например: «собака хозяина» или «хозяин собаки»), понимание предлогов и союзов, отражающих сложные отношения между предметами, явлениями и качествами.
А теперь вернемся назад, к той самой игре «Прятки», и посмотрим – а как же она помогает развитию одной из необходимых составляющих математического мышления – пространственных и квазипространственных представлений[1].
Ребенок спрятался за деревом – он должен понять, будет ли его видно?
Дерево не очень объемное.
Ребенок, немного подумав, встает боком.
Книга написана на материале, собранном в течение 10-летней работы Научно-исследовательского Центра детской нейропсихологии. Она адресована родителям школьников и учителям для того, чтобы они поняли причину школьных перегрузок детей и осознали, насколько важна для них сбалансированность всех компонентов успешного школьного обучения – школы, подходящей по уровню развития и контингенту детей, отношений между учителями и родителями, умения продуктивно учиться и не менее продуктивно проводить свободное время.В книге предложены варианты игровых упражнений, которые с успехом заменят утомительные занятия по предмету, трудно дающемуся вашему ребенку.
Книга «Решаем школьные проблемы. Советы нейропсихолога» написана на материале, собранном в течение десятилетней работы Научно-исследовательского Центра детской нейропсихологии. Она раскрывает причины затруднений, которые дети могут испытывать в процессе школьного обучения, – это проблемы учебные, поведенческие, а также проблемы общения со сверстниками и взрослыми. В ней даются действенные советы, проверенные на практике. Книга адресована родителям школьников и учителям. Прочитав ее, взрослые смогут осознать собственные ошибки и, исправив их, достигнуть гармоничных отношений с детьми.Все права защищены.
Чудесная картина: ваш ребенок взял книжку и с удовольствием читает. Хотите, чтобы она стала реальностью? Маленький нейропсихологический «ликбез» позволит вам в домашних условиях создать это чудо. Знаете, почему дети не читают? Они не хотят делать того, что трудно и неинтересно. Они такие же, как и мы, только маленькие! – Но ведь мы же читали! – скажете вы. – Значит, в детстве вы играли в другие игры! – ответят вам нейропсихологи. Они уже обнаружили связь между тем, во что и как ребенок играл в детстве, и тем, насколько легко он овладеет чтением.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Продолжаем играть с детьми под руководством нейропсихологов. В этой книге собраны игры для развития восприятия, памяти и мышления. Развитие этих функций у дошкольников намного важнее, чем даже умение читать и считать. При этом игры не занимают много времени и не требуют особой подготовки. Зато сколько приносят пользы и удовольствия! А играть в них можно, когда вы с ребенком идете домой из садика или готовите вместе с ним обед.Итак, играть всегда, играть везде!В книге много полезных советов от нейропсихологов, которые будут интересны специалистам, работающим с детьми, и всем любящим родителям.