Математика. Поиск истины. - [48]
Галилей настойчиво подчеркивал, что если мы хотим установить правильные основополагающие принципы, то необходимо прислушиваться к «голосу» природы, а не следовать тому, что кажется предпочтительным нашему разуму. Галилей открыто критиковал естествоиспытателей и философов, принимавших те или иные принципы на том лишь основании, что они согласуются с их априорными представлениями о явлениях природы. По мнению Галилея, природа не сотворила сначала человеческий мозг, а потом остальной мир, сделав его приемлемым для человеческого разума. Критикуя средневековых схоластов, повторявших изречения Аристотеля и занимавшихся их толкованием, Галилей отмечал, что знание берется из наблюдения, а не из книг. Толкование Аристотеля — занятие бесполезное. Тех же, кто с упоением предавался этому занятию, Галилей называл бумажными учеными, полагающими, будто науку можно изучать, как «Энеиду», «Одиссею» или путем надергивания цитат из различных текстов. Природа создает свои творения, как ей заблагорассудится, человеческому разуму надлежит напрягать все свои силы, чтобы понять ее. «Природу не интересует, доступны ли ее трудно постижимые причины и способы действия пониманию людей… Когда мы имеем дело с «декретами» природы, авторитет бессилен».
Против засилья схоластики возвышали свой голос и многие предшественники Галилея. Леонардо да Винчи утверждал, что науки, которые берут начало и обретают конец в человеческом разуме, не рождают истин, ибо в умопостроение не входит опыт, а без него не может быть уверенности в истинности того или иного умозаключения: «Если не опираться на прочный фундамент природы, то труд принесет мало чести и еще меньше пользы». Современник Галилея Фрэнсис Бэкон обрушился с резкой критикой на различного рода идолов, заполнивших человеческий разум и мешавших людям видеть истину. Но до Галилея экспериментирование в поисках основополагающих принципов велось наощупь и не имело четкой направленности.
Однако современник Галилея Декарт не видел мудрости в том, чтобы прибегать к экспериментированию в поиске истины. По мнению Декарта, чувственный опыт способен лишь вводить в заблуждение. Разум же развеивает подобные заблуждения. Исходя из общих принципов, от рождения присущих нашему разуму, мы можем вывести логическим путем те или иные частные явления природы и понять их. И хотя во многих естественнонаучных работах Декарт экспериментировал и неукоснительно следил за тем, чтобы теория соответствовала фактам, но в философии настойчиво отстаивал мысль, что истины рождаются лишь разумом.
Хотя Галилей производил эксперименты вполне обдуманно и планомерно, не следует думать, что экспериментирование тогда велось в широких масштабах и стало новой решающей силой в науке. Перелом в пользу экспериментального подхода наступил лишь в XIX в. Разумеется, и в XVII в. были выдающиеся экспериментаторы: физик Роберт Гук, химик Роберт Бойль, математик и физик Христиан Гюйгенс, не говоря уже о самом Галилее или Исааке Ньютоне. Что касается Галилея, то он отнюдь не был чистым экспериментатором, как его нередко пытаются представить. И Галилей, и даже Ньютон полагали, что небольшого числа решающих экспериментов и тонких наблюдений вполне достаточно для нащупывания правильных основополагающих принципов. Ньютон всячески подчеркивал свою приверженность математике, признаваясь, что прибегать к эксперименту его вынуждает лишь необходимость придать физический смысл своим результатам и убедить в их правильности «простолюдина». Многие из так называемых экспериментов Галилея в действительности есть не что иное, как мысленные опыты, иначе говоря, Галилей прибегал к эксперименту лишь мысленно, пытаясь представить, каким мог бы быть исход опыта, если бы тот был поставлен, и на основании своих умозаключений делал вывод с такой уверенностью, словно эксперимент действительно произведен. В своих сочинениях он зачастую описывал эксперименты, которые никогда не проводил. Галилей отстаивал гелиоцентрическую теорию, хотя в том виде, как ее разработал Коперник, она отнюдь не давала хорошего согласия с наблюдениями. Описывая некоторые свои опыты, связанные с изучением движения по наклонной плоскости, Галилей не приводит фактических данных, а утверждает лишь, будто полученные им результаты дают великолепное согласие с теорией: это весьма сомнительно, если принять во внимание несовершенство часовых механизмов того времени. Основу метода Галилея составляли небольшое число фундаментальных принципов, почерпнутых из наблюдения природы, и широкое использование математических рассуждений. В своем «Диалоге о двух главнейших системах мира» Галилей описывает опыт с бросанием свинцового шара с вершины мачты движущегося корабля. На вопрос одного из участников диалога Симпличио: «Как же это, не проделав ни ста испытаний, ни даже одного, вы выступаете столь решительным образом?», другой собеседник, Сальвиати, выражая взгляды самого Галилея, отвечает: «Я и без опыта уверен, что результат будет такой, какой я вам говорю, так как необходимо, чтобы он последовал; более того, я скажу, что вы и сами также знаете, что не может быть иначе, хотя притворяетесь или делает вид, будто не знаете этого» ([12], т. 1, с. 243). Далее Сальвиати признается, что прибегает к эксперименту лишь изредка и главным образом для того, чтобы опровергнуть мнения тех, кто не желает следовать математическому методу.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.