Математика и искусство - [17]

Шрифт
Интервал

Дюрер. Построение эллипса как конического сечения. Рисунок из 'Руководства к измерению'. 1525. Нетрудно заметить, что эллипс у Дюрера имеет яйцевидную форму. Эта ошибка великого художника обусловлена, видимо, тем интуитивным соображением, что эллипс должен расширяться по мере расширения конуса

Я восклицаю: природа, природа!
Что может быть большей природой, чем люди Шекспира!
И. В. Гёте

Перенесемся же во вторую половину XX века, когда споры о науке и искусстве достигли наивысшего накала. Главная причина, вызвавшая вспышку таких споров, заключается в том, что в условиях современной научно-технической революции наука стала непосредственной производительной силой, охватившей значительную часть общества. Только в нашей стране армия научных работников превышает один миллион человек, что почти в два раза больше армии Наполеона в Отечественной войне 1812 г. Овладение энергией атома и освоение человеком новой стихии — космического пространства — обеспечили современной науке небывалый престиж. Сложилось убеждение, что основная сила человеческого разума должна концентрироваться именно в науке, и прежде всего в математике и физике — столпах всей научно-технической революции.

Наука и искусство — грани творчества

Искусству же отводилась роль падчерицы, и то, что эта падчерица вопреки прогнозам столетней давности всегда мешалась под ногами, только раззадоривало технократов.

Итак, атмосфера была накалена и оставалось только высечь искру, чтобы грянул взрыв. Это сделал английский писатель, физик по образованию Чарльз Сноу, выступив в мае 1959 г. в Кембридже (США) с лекцией "Две культуры и научная революция". Лекция Сноу взбудоражила научную и художественную общественность Запада: одни стали его убежденными сторонниками, другие — ярыми противниками, третьи пытались найти золотую середину. Основной мотив лекции — взаимное обособление науки и искусства, которое ведет к образованию двух самостоятельных культур — "научной" и "художественной". Между этими полюсами интеллектуальной жизни общества, по мнению Сноу, разверзлась пропасть взаимного непонимания, а иногда и враждебности и неприязни. Традиционная культура, не способная воспринять новейшие достижения науки, якобы неизбежно скатывается на путь антинаучности. С другой стороны, научно-технической среде, которая игнорирует художественные ценности, грозит эмоциональный голод и антигуманность. Сноу полагал, что причина разобщенности двух культур кроется в чрезмерной специализации образования на Западе, указывая при этом на Советский Союз, где система образования более универсальна, а значит, и нет проблемы взаимоотношения науки и искусства.

Здесь Сноу заблуждался. Практически одновременно, в сентябре 1959 г., на страницах наших газет вспыхнул знаменитый спор "физиков" и "лириков", как Условно обозначили представителей науки и искусства.

Дискуссия началась статьей писателя И. Эренбурга. Это был ответ на письмо некой студентки, рассказывавшей о своем конфликте с неким инженером, который, кроме физики, ничего другого в жизни не признает (и прежде всего искусства). Увидев в частном письме назревшую проблему, Эренбург поместил в "Комсомольской правде" обширный ответ. Писатель подчеркивал" что в условиях небывалого прогресса науки очень ясно, чтобы искусство не отставало от науки, чтобы место в обществе было "местом пророка, который жжет глаголом сердца людей, как говорил Пушкин, а не местом исправного писца или равнодушного декоратора". "Все понимают,- писал Эренбург,- что наука помогает понять мир; куда менее известно то познание, которое несет искусство. Ни социологи, ни психологи не могут дать того объяснения душевного мира человека, которое дает художник. Наука помогает узнать известные законы, но искусство заглядывает в душевные глубины, куда не проникают никакие рентгеновские лучи..."

Статья Эренбурга вызвала цепную реакцию мнений. Одна статья породила несколько других, и все вместе они грохотали, как лавина. У Эренбурга были союзники, но были и противники. Среди последних "прославился" инженер. Полетаев, который писал: "Мы живем творчеством разума, а не чувства, поэзией идей, теорией экспериментов, строительства. Это наша эпоха. Она требует всего человека без остатка, и некогда нам восклицать: ах, Бах! ах, Блок! Конечно же, они устарели и стали не в рост с нашей жизнью. Хотим мы этого или нет, они стали досугом, развлечением, а не жизнью... Хотим мы этого или нет, но поэты все меньше владеют нашими душами и все меньше учат нас. Самые увлекательные сказки преподносят сегодня наука и техника, смелый и беспощадный разум. Не признавать этого — значит не видеть, что делается вокруг. Искусство отходит на второй план — в отдых, в досуг, и я жалею об этом вместе с Эренбургом".

Наука и искусство — грани творчества

Возмущенные "лирики" и рассудительные "физики" на все лады склоняли Полетаева[7]. Появились и статьи-крики: "Я с тобой, инженер Полетаев!", появились и самобичующие стихи:

Что-то физики в почете,
Что-то лирики в загоне.
Дело не в сухом расчете,
Дело в мировом законе.
Значит, что-то не раскрыли

Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.