Математический аппарат инженера - [41]
Для определения совместимых состояний можно воспользоваться методом, аналогичным изложенному для полных автоматов. Исходная таблица содержит пары таких состояний, при которых для любого допустимого
- 578 -
символа отсутствуют различные выходы. Клетки, соответствующие запрещенным входам для данной пары состояний, заполняются прочерком и при исключении пар, как это описано в (8), не учитываются. Так, для автомата, заданного табл. 12, имеем:
Отмеченная на первом шаге пара {0, 2} является единственной несовместимой парой в таблице, так как она не содержится ни в каких других строках. Следовательно, всенеотмеченные пары являются совместимыми. Построив матрицу толерантности для совместимых пар и переставив в ней строки и столбцы, имеем:
Отсюда выделяем кассы толерантности S>'>0= {0, 1, 4, 5}, S>'>1= {0, 3, 4, 5} S>'>2= {2, 3, 4, 5}, объединяющие совместимые между
- 579 -
собой состояния. Здесь, в частности, можно убедиться в том, что совместимость не обладает свойством транзитивности. Например, пары состояний {0, 1} и {0, 3} совместимы, но состояния 1 и 3 не входят в один и тот же класс толерантности и, следовательно, они несовместимы.
Из определения совместимости и способа получения классов толерантности следует, что при воздействии любого не запрещенного входного символа автомат из совместимых состояний переходит в одно и то же или в совместимые состояния, а выходы (если они определены) при этом будут одинаковы.
Так, в нашем примере при воздействии 0 классы S'>0 и S'>1 переходят в {1, 5}, а S'>2 – в {3, 5}; при воздействии 1 класс S'>0 переходит в {4, 5}, S'>1 – в {5} и S'>2 – в {1, 5}. Следовательно, исходный автомат можно представить квазиэквивалентным ему автоматом, в котором классам совместимости S'>1, S>2,..., S'>w соответствуют состояния σ'>0, σ'>1, ..., σ'>w . Однако такой автомат не всегда будет минимальным. Для получения минимальной формы автомата необходимо отобрать наименьшее число таких классов совместимости, которые образуют покрытие множества состояний S и в то же время включают множества состояний, следующих за состояниями каждого класса при всех незапрещенных воздействиях. Для рассматриваемого примера этим требованиям удовлетворяют классы S'>0 и S'>1, так как S'>0 ∪ S'>2 = S, и все множества последующих состояний {1, 5}, {3, 5}, {4, 5} и {5} являются подмножествами S'>0 и S'>2. Соответствующая минимальная форма показана на рис. 241, б, где состояния 0и 1 соответствуют классам S'>0 и S'>2.
Дальнейшие упрощения относятся не к числу состояний, а к структуре множеств, образующих минимальное покрытие S. Если из отобранных классов толерантности можно исключить некоторые состояния так, что полученные подмножества удовлетворяют приведенным выше требованиям, то эти подмножества также определяют другой вариант минимальной формы автомата. Так, из S'>0 или из S'>2 можно исключить состояние 4, поскольку оно входит только в множество последующих состояний {4, 5}. Тогда получим еще два варианта минимальных покрытий: {0, 1, 5}, {2, 3, 4, 5} и {0, 1, 4, 5}, {2, 3, 5}. Но состояние 5 нельзя исключить ни из одного класса, хотя оно и содержится в каждом из них, так как множества последующих состояний {1, 5} и {3, 5} показывают, что состояние 5 должно содержаться как в S'>0, так и в S'>2.
- !!!!!!!!!!!!!!!!!!!!! -
- Продолжение следует... -
...
7. Многозначная логика
8. Логика высказываний
9. Логика предикатов
10. Алгоритмы
Список литературы
Глава 6. Вероятности
1. Случайные события
2. Случайные величины
3. Преобразования случайных величин
4. Обработка наблюдений
5. Процессы массового обслуживания
6. Надежность и восстановление
7. Информация и связь
Список литературы
Предметный указатель
12 апреля 1961 года — самая светлая дата в истории XX века. В тот день советский летчик Юрий Алексеевич Гагарин обогнул Землю на космическом корабле «Восток», открыв человечеству дорогу к звездам. Биография первого космонавта и его орбитальный рейс хорошо изучены, однако за минувшие десятилетия они обросли множеством мифов. Правдивые воспоминания очевидцев и новейшие рассекреченные документы, собранные в этой книге, позволяют вернуть историческую правду. Они наглядно показывают, сколь значительные трудности пришлось преодолеть Юрию Гагарину на пути к заветной цели.
Статья, дающая смелый прогноз развития электротехники, транспорта, энергетики на 70 лет вперед. Напечатана 15 февраля 1927 года в газете "Харьковский пролетарий". Перевод с французского.
Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.