Математические головоломки и развлечения - [99]
Классическим примером может служить задача о сломанной палке: палку случайным образом ломают на три части; какова вероятность того, что из обломков можно составить треугольник? Для того чтобы решить эту задачу, мы должны непременно уточнить, как именно разрешается ломать палку.
Один из возможных вариантов заключается в следующем. Будем считать, что точки перелома равномерно распределены по длине палки. Выберем из них наугад две и переломим палку в выбранных точках. При таком понимании «случайного» переламывания палки на три части ответ задачи, как нетрудно показать, исходя из наглядных геометрических представлений, равен 1/4.
Действительно, нарисуем равносторонний треугольник и соединим середины его сторон отрезками прямых. У нас получится равносторонний треугольник меньших размеров, расположенный внутри первого (на рис. 176 меньший треугольник заштрихован).
Рис. 176Если палку разломать на три части, то из ее обломков с вероятностью 1/4 можно составить треугольник.
Сумма длин перпендикуляров, опущенных из любой точки большого треугольника на его стороны, не зависит от выбора точки и равна высоте большого треугольника. Если эту точку выбрать внутри меньшего треугольника (на рис. 176 этому условию удовлетворяет точка А), то любой из трех перпендикуляров будет не больше суммы двух других перпендикуляров. Следовательно, из отрезков, равных по длине трем перпендикулярам, опущенным из любой точки малого треугольника на стороны большого, всегда можно построить треугольник. Если же точка лежит вне малого треугольника (на рис. 176 —точка В), то один перпендикуляр заведомо длиннее суммы двух других перпендикуляров, и построить из таких перпендикуляров треугольник невозможно.
Мы не случайно привели здесь эту простую геометрическую задачу. Ее решение тесно связано с решением вероятностной задачи о сломанной палке. В самом деле, сумма трех перпендикуляров соответствует длине палки, каждая точка большого треугольника отвечает одному и только одному способу разломать палку на три части, а три перпендикуляра — трем обломкам. Вероятность сломать палку с «благоприятным исходом» равна вероятности случайного выбора такой точки, что три опущенных из нее перпендикуляра могут служить сторонами некоторого треугольника. Как мы только что видели, такое событие возможно лишь тогда, когда случайно выбранная точка попадает внутрь заштрихованного треугольника.
Так как его площадь составляет 1/4 площади всего треугольника, то искомая вероятность равна 1/4.
Утверждению о том, что «палку случайным образом ломают на три части», можно придать иной смысл. Например, его можно толковать так: палку наугад переламывают на две части, затем также наугад выбирают один из обломков и переламывают его еще раз (снова в случайно выбранной точке). С какой вероятностью в этом случае из обломков можно составить треугольник?
Решение задачи дает тот же чертеж, что и в предыдущем случае. Если, переломив палку в первый раз, мы выберем более короткий обломок, то построить треугольник будет невозможно. Что же произойдет, если выбрать обломок подлиннее? Пусть вертикальный перпендикуляр на чертеже соответствует короткому обломку.
Для того чтобы вертикальный перпендикуляр был меньше суммы двух других перпендикуляров, точка, из которой они опущены, не должна лежать внутри самого верхнего из малых треугольников, на которые отрезками прямых, соединяющих середины его сторон, поделен большой треугольник. Точки, у которых вертикальный перпендикуляр меньше суммы двух других перпендикуляров, равномерно заполняют три малых треугольника в нижней части большого треугольника. Благоприятному исходу по-прежнему соответствуют лишь те точки, которые попадают внутрь заштрихованного треугольника, но на этот раз его площадь составляет лишь 1/3 площади, отвечающей всем возможным исходам. Следовательно, выбрав из двух обломков больший, мы сможем построить треугольник (разломав выбранный нами обломок еще раз на две части) лишь в 1/3 случаев. Так как вероятность выбрать больший обломок равна 1/2, ответ на вопрос задачи в этом случае равен произведению 1/2 на 1/3, то есть 1/6.
Геометрическими построениями в задачах такого рода следует пользоваться осторожно, потому что они также способны вводить в заблуждение своей неоднозначностью. В качестве примера приведем одну задачу, рассмотренную в курсе теории вероятностей знаменитого французского математика XIX века Бертрана: какова вероятность того, что проведенная наудачу хорда будет длиннее стороны равностороннего треугольника, вписанного в ту же окружность?
Ответить на этот вопрос можно, например, так. Хорда должна начинаться в некоторой точке окружности. Обозначим эту точку через А и проведем к окружности касательную в точке А (рис. 177,a).
Рис. 177Вероятность того, что наудачу проведенная хорда длиннее стороны вписанного равностороннего треугольника, оказывается 1/3 (a), 1/2 (б) и 1/4 (в).
Другим концом хорды может быть любая точка окружности, поэтому мы получаем бесконечно много равновероятных хорд (некоторые из них на чертеже показаны пунктиром). Ясно, что длиннее стороны вписанного равностороннего треугольника могут быть лишь те хорды, которые попадают внутрь угла при вершине треугольника в точке
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.