Математические головоломки и развлечения - [3]
Это произошло в конце 1939 года. Как-то раз Артур X. Стоун, двадцатитрехлетний аспирант из Англии, изучавший математику в Принстоне, обрезал листы американского блокнота, чтобы подогнать их под привычный формат. Желая немного развлечься, Стоун принялся складывать из отрезанных полосок бумаги различные фигуры. Одна из сделанных им фигур оказалась особенно интересной. Перегнув полоску бумаги в трех местах и соединив концы, он получил правильный шестиугольник (рис. 1).
Рис. 1 Тригексафлексагон складывают из полоски бумаги, предварительно размеченной на 10 равносторонних треугольников (а). Полоску перегибают по линии db и переворачивают E). Перегнув полоску еще раз по линии cd, расположим ее концы так, чтобы предпоследний треугольник оказался наложенным на первый (в). Последний треугольник нужно подогнуть вниз и приклеить к оборотной стороне первого треугольника (г). Как сгибать трифлексагон, показано на рис. 3. Развертку трифлексагона нужно перечертить и вырезать из полоски достаточно плотной бумаги шириной около 3–4 см.
Взяв этот шестиугольник за два смежных треугольника, Стоун подогнул противоположный угол вниз так, что его вершина совпала с центром фигуры. При этом Стоун обратил внимание на то, что, когда шестиугольник раскрывался словно бутон, видимой становилась совсем другая поверхность. Если бы обе стороны исходного шестиугольника были разного цвета, то после перегибания видимая поверхность изменила бы свою окраску. Так был открыт самый первый флексагон с тремя поверхностями. Поразмыслив над ним ночь, Стоун наутро убедился в правильности своих чисто умозрительных заключений: оказалось, можно построить и более сложный шестиугольник с шестью поверхностями вместо трех. При этом Стоуну удалось найти настолько интересную конфигурацию, что он решил показать свои бумажные модели друзьям по университету. Вскоре «флексагоны» в изобилии стали появляться на столе во время завтраков и обедов, когда вся компания собиралась вместе. Для проникновения в тайны «флексологии» был организован «Флексагонный комитет». Кроме Стоуна, в него вошли аспирант-математик Бриан Таккермен, аспирант-физик Ричард Фейнман и молодой преподаватель математики Джон У. Тьюки.
Постоянные модели были названы гексафлексагонами: «гекса» — из-за шестиугольной формы, «флексатонами» — из-за их способности складываться.[3] Первый построенный Стоуном флексагон был назван тригексафлексагоном, так как у него были три поверхности. Вторая не менее изящная модель Стоуна получила название гексагексафлексагона (первое «гекса» — шесть — также означает число поверхностей этой модели).
Чтобы сложить гексагексафлексагон, берут полоску бумаги (великолепным материалом для изготовления гексагексафлексагонов может служить лента для кассовых аппаратов), разделенную на 19 равносторонних треугольников. В треугольники с одной стороны нужно вписать в указанном на рис. 2 порядке цифры 1, 2, 3.
Девятнадцатый (последний) треугольник остается незаполненным.
Треугольники на обратной стороне следует в соответствии со схемой на рис. 2 пронумеровать цифрами 4, 5, 6. После этого полоску складывают так, чтобы треугольники на ее обратной стороне, имеющие одинаковые цифры, оказались наложенными друг на друга — 4 на 4, 5 на 5, 6 на 6. В результате у нас получится заготовка сагексафлексагона, показанная на рис. 2, б. Перегнув ее по линиям аЬ и cd (рис. 2, б), получим шестиугольник. Остается лишь подвернуть вниз торчащий вправо пустой треугольник и приклеить его к пустому треугольнику на нижней стороне полоски. Проделать все эти операции намного легче, чем описать.
Рис. 2 Гексагексафлексагоны складывают из полоски бумаги, разделенной на 19 равносторонних треугольников (а). Треугольники на одной стороне полоски обозначены цифрами 1, 2, 3; треугольники на другой стороне — цифрами 4, 5, 6. Вместо цифр треугольники можно раскрасить в различные цвета (каждой цифре должен соответствовать только один цвет) или нарисовать на них какую-нибудь геометрическую фигуру. Как складывать полоску, ясно из рисунка. Перегибая гексагексафлексагон, можно увидеть все шесть его разворотов.
Если все сделано верно, то во всех треугольниках на видимой стороне шестиугольника должна стоять цифра 1, а во всех треугольниках на обратной стороне — цифра 2. В таком виде сафлексагон готов к перегибаниям. Взявшись за два смежных треугольника (рис. 3), согнем шестиугольник по общей стороне этих треугольников и подогнем противоположный угол флексагона. При этом откроются треугольники с цифрами 3 или 5. Перегибая флексагон наугад, вы без труда обнаружите и остальные поверхности.
Рис. 3 Чтобы «открыть» тригексафлексагон, его нужно одной рукой взять за два соседних треугольника, примыкающих к какой-нибудь вершине шестиугольника (а), а другой рукой потянуть за свободный край двух противоположных треугольников (б). Если флексатон не открывается, нужно попробовать ухватить его за два других треугольника. При открывании шестиугольник выворачивается наизнанку, и наружу выходит поверхность, которая ранее скрывалась внутри.
Однако поверхности с цифрами 4, 5 и 6 найти несколько труднее, чем поверхности с цифрами 1, 2 и 3. Иногда вы будете блуждать по замкнутому кругу: сколько бы вы ни бились, перед вами будут открываться лишь одни и те же уже успевшие надоесть вам поверхности.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.
Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.