Математические головоломки и развлечения - [2]
Никто не станет отрицать, что флексагоны, о которых говорится в первой главе этой книги, — игрушки весьма занимательные, тем не менее анализ их структуры очень скоро упирается и необходимость использования высших разделов теории групп, и статьи о флексатонах можно встретить на страницах многих сугубо специальных математических журналов.
Математики творческого склада обычно не стыдятся своего интереса к занимательным задачам и головоломкам. Топология берет свое начало в работе Эйлера о семи кенигсбергских мостах. Лейбниц потратил немало времени на решение головоломки, которая пережила свое второе рождение под названием «Проверьте уровень своего развития (IQ)». Крупнейший немецкий математик Гильберт доказал одну из основных теорем традиционной области занимательной математики — разрезания фигур. А. Тьюринг, основоположник современной теории вычислительных машин, рассмотрел изобретенную С. Лойдом игру в 15 (в нашей книге ей посвящена глава 9) в своей статье о разрешимых и неразрешимых проблемах.
П. Хейн (чьи игры гекс и тактике описаны в главах 8 и 15) рассказал мне, что, будучи в гостях в Эйнштейна, видел в книжном шкафу хозяина целую полку, забитую математическими забавами и головоломками. Нетрудно понять интерес, который все эти великие умы питали к математической игре, ибо творческое мышление, находящее для себя награду в столь тривиальных задачках, сродни тому типу мышления, который приводит к математическому и вообще научному открытию. В конце концов, что такое математика, как не систематические попытки найти все лучшие и лучшие ответы на те головоломки, которые ставит перед нами природа?
В настоящее время педагогическая ценность занимательной математики общепризнана. Это подчеркивают и журналы, предназначенные для преподавателей математики, и новые учебники, особенно те из них, которые написаны с «современных позиций». Так, даже в столь серьезной книге, как «Введение в конечную математику»,[1] изложение нередко оживляется занимательными задачами.
Вряд ли существует лучший способ пробудить интерес читателя к изучаемому материалу. Преподаватель математики, выговаривающий студентам за игру на лекции в крестики и нолики, должен был бы остановиться, чтобы спросить себя, не представляет ли эта игра большего интереса с точки зрения математики, чем его лекция. И действительно, разбор игры в крестики и нолики на семинарских занятиях может послужить неплохим введением в некоторые разделы современной математики.
Известный английский изобретатель головоломок Генри Дьюдени в своей статье «Психологическая сторона увлечений головоломками», опубликованной в декабрьском номере Nineteenth Century Magazine за 1926 год, писал, что литература по занимательной математике страдает чудовищными повторениями, а отсутствие соответствующей библиографии вынуждает энтузиастов понапрасну тратить время на составление задач, которые были уже придуманы задолго до них. Сегодня я счастлив сообщить, что потребность в подобного рода библиографии удовлетворена. Профессор У. Л. Шааф из Бруклинского колледжа составил превосходную библиографию.[2] Что же касается второго упрека Дьюдени, то боюсь, что он все еще справедлив как по отношению к выходящим в наше время книгам по занимательной математике, так и по отношению к книге, предлагаемой вниманию читателей. Но я хочу надеяться, что в моей книге читатели обнаружат большую, чем обычно, порцию свежего материала, который прежде не находил места на страницах занимательной математической литературы.
Мне хотелось бы поблагодарить Дж. Пила, издателя журнала Scientific American, и редактора Д. Фленегена за оказанную мне честь принадлежать к числу постоянных авторов этого журнала и за разрешение воспроизвести плоды моих трудов в этой книге. Я выражаю свою признательность тысячам читателей со всех концов света, которые взяли на себя труд обратить мое внимание на допущенные в них ошибки (к сожалению, слишком многочисленные) и внесли множество ценных предложений. В некоторых случаях эта приветствуемая мной «обратная связь» нашла отражение непосредственно в тексте, но чаще всего из замечаний читателей составлены дополнения, помещенные в конце глав. Ответы к задачам, где это необходимо, помещены там же.
Не могу не выразить благодарности своей жене не только за то, что она со знанием дела и неизменной бодростью духа принимала участие в чтении корректур, но и за проявленное ею терпение, когда, погруженный в размышления о какой-либо математической головоломке, я не слышал того, что она мне говорила.
Мартин Гарднер
Глава 1. ГЕКСАФЛЕКСАГОНЫ
Флексагоны — это многоугольники, сложенные из полосок бумаги прямоугольной или более сложной, изогнутой формы, которые обладают удивительным свойством: при перегибании флексагонов их наружные поверхности прячутся внутрь, а ранее скрытые неожиданно выходят наружу. Если бы не одно случайное обстоятельство — различие в формате английских и американских блокнотов, — флексагоны, возможно, не были бы открыты и по сей день и многие выдающиеся математики лишились бы удовольствия изучать их замысловатую структуру.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.