Математические головоломки и развлечения - [144]

Шрифт
Интервал



Рис. 248Ответы к задаче о «прочных» прямоугольниках.


Нетрудно показать, что минимальная ширина «прочного» прямоугольника должна быть больше четырех. (Случаи, когда ширина прямоугольника равна 2, 3 и 4, лучше всего рассматривать по отдельности.) Поскольку квадрат размером 5x5 состоит из нечетного числа квадратов, а площадь области, построенной из домино, всегда четна, то минимальные размеры прямоугольника равны 5x6.

Прямоугольник 5x6 можно увеличить до размеров шахматной доски (8х8), и он все-таки будет «прочным». Пример такого построения изображен на рис. 249.




Рис. 249Прочный прямоугольник на шахматной доске размером 8x8 клеток.


Как это ни удивительно, но не существует «прочных» прямоугольников размером 6x6. Этот факт имеет замечательное доказательство.

Представьте себе, что прямоугольник 6x6 целиком покрыт домино. Для этого нужно 18 костей домино (половина площади), а чтобы разделить прямоугольник на клетки, понадобится 10 линий (пять вертикальных и пять горизонтальных). Прямоугольник будет «прочным», если прямая из образующих сетку пересекает по крайней мере одно домино.

Приступая к доказательству, прежде всего покажем, что в любом «прочном» прямоугольнике каждая прямая сетки границ пересекает четное число элементов домино. Рассмотрим любую вертикальную прямую сетки. Площадь слева от нее четна (то есть выражается четным числом единичных квадратов): 6, 12, 18, 24 или 30. Те домино, которые целиком находятся слева от этой прямой, должны занимать четную площадь, поскольку каждый элемент домино покрывает два квадрата. Домино, которые разрезаются этой прямой, тоже занимают слева от нее четную площадь, потому что эта площадь равна разности двух четных чисел (всей площади слева от прямой и площади неразрезанных домино, тоже находящихся слева). Но поскольку разрезанное домино занимает всего один квадрат слева от выбранной прямой, то число элементов домино, разрезаемых прямой, должно быть четным. Сетка в квадрате 6x6 состоит из девяти прямых. Чтобы прямоугольник был «прочным», каждая прямая должна пересекать по крайней мере два домино.

Ни одно домино нельзя пересечь более чем одной линией сетки, поэтому сетка разрезает по крайней мере 12 домино. А в квадрате 6x6 всего лишь 18 домино!

Аналогичным образом можно показать, что прямоугольник 6x8 будет «прочным» только в том случае, если каждый отрезок сетки границ пересекает ровно два домино. Такой прямоугольник изображен на рис. 250.



Рис. 250Прочный прямоугольник 6x8.


В самом общем виде результат можно сформулировать так: из домино можно сложить «прочный» прямоугольник, если его площадь четна, а длина и ширина больше четырех; исключение составляет квадрат 6х6. В действительности, чтобы сложить прямоугольник большего размера, нужно применить к прямоугольникам 5х6 и 6х8 метод увеличения длины или ширины на две единицы.

Проще всего объяснить, как это делается, с помощью рис. 251.



Рис. 251Общее решение задачи о построении «прочного» прямоугольника.


Для удлинения фигуры в горизонтальном направлении на две единицы надо положить по одному домино рядом с каждым домино, лежащим горизонтально, а все вертикальные домино надо выдвинуть до новых границ, заложив освободившееся место горизонтальными домино.

Может быть, для читателя окажется интересным рассмотреть в качестве кирпичей элементы тримино. В частности, возникает вопрос: каковы наименьшие размеры «прочного» прямоугольника, который можно сложить из двух или большего числа «прямых тримино» (то есть прямоугольников размером 1x3)?

Литература по занимательной математике

Составил Ю. А. Данилов


Аменицкий Н. Н. Любопытные путешествия. — сер. «Научно-забавная библиотека для семьи и школы», вып. 2. —М.: 1912.

Аменицкий Н. Н. Игра «Nim». — сер. «Научно-забавная библиотека для семьи и школы», вып. 6. — М.: 1912.

Аменицкий Н. Н. Игра «15» (Taquin), «Солитер» (играв «пустынника»): сер. «Научно-забавная библиотека для семьи и школы», вып. 7.— М.: 1912.

Аменицкий Н. Н. Ход коня: сер. «Научно-забавная библиотека для семьи и школы», вып. 8. — М.: 1912.

Аменицкий Н. Н. Арифметические развлечения: сер. «Научно-забавная библиотека для семьи и школы», вып. 17. — М.: 1912.

Аменицкий Н. Н., В. А. Г. Магические квадраты: Арифметические курьезы: сер. «Научно-забавная библиотека для семьи и школы», вып. 5. —М.: 1912.

Аменицкий Н. Н., Сахаров И. П. Забавная арифметика: Хрестоматия для развития сообразительности детей в семье и школе, 4-е изд., доп. /вып. 1. Младший возраст; вып. 2. Средний возраст; вып. 3. Старший возраст. — М.: Товарищество И. Д. Сытина, 1912.

Аменицкий Н. Н., Шиман Е. М., Шукайло К. П. Морские узлы и фокусы с веревками: Что можно сделать из листа бумаги: сер. «Научно-забавная библиотека для семьи и школы», вып. 3. — М.: 1912.

Аменицкий Н. Н., Шиман Е. М., Шукайло К. П. Что можно сделать из листа бумаги (продолжение): сер. «Научно-забавная библиотека для семьи и школы», вып. 4. — М.: 1912.

Анаксиотис. Теорема Фермата. — Киев: 1911.

Арене В. Математические игры и развлечения. — М. —Л.: изд. «Петроград», 1924.

Арифметические игры: сер. «Научно-забавная библиотека для семьи и школы», вып. 1. — М.: 1912.


Еще от автора Мартин Гарднер
Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Остров пяти красок

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.