Математические головоломки и развлечения - [145]
Архангельский А. Г., Озорной М. Занимательный досуг: Фокусы.
Загадки. Игры со спичками. Шарады. Ребусы. Головоломки. Задачи. Игры. — М.: «Крестьянская газета», 1927.
Баше К. Г. Игры и задачи, основанные на математике. — Спб. — М.: 1877.
Белополъский И. Р. Фокусы и головоломки. — Л.: Гизместпром НКМП РСФСР, 1939.
Бобров СП. Архимедово лето, или История содружества юных математиков. — М.: Детгиз, 1959 (кн. 1), 1962 (кн. 2).
Бобров С.П. Волшебный двурог, или Правдивая история небывалых приключений нашего отважного друга Ильи Александровича Камова в неведомой стране, где правят: Догадка, Усидчивость, Находчивость, Терпение, Остроумие и Трудолюбие и которая в то же время есть пресветлое царство веселого, но совершенно таинственного существа, чье имя очень похоже на название этой удивительной книжки, которую надлежит читать не торопясь: Книга для юных читателей, которые любят точные науки и математику: изд. 2-е, перераб. и доп. — М.: Детская литература, 1967.
Болховитинов В. Н., Колтовой Б. И., Лаговский И. К. Твое свободное время. — М.: Детская литература, 1970.
Буттер И. Занимательные и увеселительные задачи и загадки, изданные Иваном Буттером /изд. 2-е с переменами. — М.: 1844.
Вебер А. Ф. Хитрые загадки — нехитрые отгадки: В мире чисел. — Пг. —М.: Мысль, 1924.
Вейтцелъ Н. А. Интересное арифметическое занятие: Составление магического квадрата четырех. — Спб.: 1888.
Виленкин Н. Я., Нешков К. И., Шварцбурд С. И., Семушин А. Д., Чесноков А. С, Нечаева Т. Ф. Математика: 5-й класс /Пробный учебник. Под ред. А. И. Маркушевича/ Задачи повышенной трудности. — М.: Просвещение, 1969, стр. 225–232.
Виола И. Математические софизмы, составленные Иоанном Виола. — М.: 1883.
Виппер Ю. Ф. Сорок пять доказательств пифагоровой теоремы. — М.: 1876.
Воронец А. М., Попов Г. Н. Математические развлечения: биб-ка «В помощь школьнику», вып. 2. — М. — Л.: Госиздат, 1928.
Воронец А. М., Попов Г. Н. Дети и юноши математики: биб-ка «В помощь школьнику», вып. 3. — М. — Л.: Госиздат, 1928.
Воротников И. А. Занимательное черчение: Пособие для учащихся VII–X классов. — М.: Учпедгиз, 1960.
Гарднер М. Математические чудеса и тайны: 2-е изд., стереотип. — М.: Наука, 1967.
Гелъфанд С. И., Гервер М. Л., Кириллов А. А., Константинов Н. Н., Кушниренко А. Г. Задачи по элементарной математике: сер. «Библиотечка физико-математической школы», вып. 3. — М.: Наука, 1965.
Германович П. Ю. Вопросы и задачи на соображение. Арифметика и алгебра: Пособие для средней школы. — Л.: Учпедгиз, 1956.
Германович П. Ю. Вопросы и задачи на соображение: Для 8-10-х классов. Алгебра, геометрия и тригонометрия: Пособие для учителей. — Л.: Учпедгиз, 1953.
Германович П. Ю. Математические викторины: Из опыта работы. — М.: Учпедгиз, 1959.
Германович П. Ю. Сборник задач по математике на сообразительность: Пособие для учителей. — М.: Учпедгиз, 1960.
Гершензон М. А. Только сколько (арифметические задачи-шутки): 2-е изд., доп… — М.: Детиздат, 1936.
Гетманский М. П. Математические аттракционы. — М.: Теокинопечать, 1928.
Горячев Д. Н., Воронец А. М. Задачи, вопросы и софизмы для любителей математики. — М.: 1903.
Гуревич Е. А. Тайна древнего талисмана. — М.: Наука, 1969.
Дернов Н. А., Коваль П. Игра цифр: Математические развлечения. — Воронеж: Коммуна, 1934.
Доморяд А. П. Математические игры и развлечения. — М.: Физматгиз, 1961.
Дынкин Е. В., Молчанов С. А., Розенталь А. Л. Математические соревнования: Арифметика и алгебра: сер. «Библиотечка физико-математической школы», вып. 3*.— М.: Наука, 1970.
Дынкин Е. Б. Молчанов С. А., Розенталь А. Л., Толпыго А. Н. Математические задачи: 2-е изд., доп.: сер. «Библиотечка физико-математической школы», вып. 1*.— М.: Наука, 1966.
Дынкин Е. В., Успенский В. А. Математические беседы: сер. «Библиотека математического кружка», вып. 6. — М. — Л.: Гостехтеоретиздат, 1952.
Еленьский Ш. По следам Пифагора: Занимательная математика. — М.: Детгиз, 1961.
Игнатьев Е. И. Математические игры, развлечения и задачи /Собрал и составил Е. И. Игнатьев. — Спб.: 1904.
Игнатьев Е. И. В царстве смекалки, или арифметика для всех: 6-е изд., переем, и испр.: кн. 1–3. — М. — Пг.: Госиздат, 1923.
Игра в «мельницу»: сер. «Научно-забавная библиотека для семьи и школы», вып. 18. — М.: 1912.
Игры и фокусы с картами: сер. «Научно-забавная библиотека для семьи и школы», вып. 27-й и последний. — М.: 1913.
Износков И. А. Полные численные квадраты. — Казань: 1914.
Износков И. А. Решение уравнений со многими неизвестными при помощи магических квадратов. — Одесса: 1895.
Износков И. А. О магических квадратах. — Казань: 1896.
Как люди считали прежде (орудия счета): сер. «Научно-забавная библиотека для семьи и школы», вып. 20. — М.: 1913.
Как люди считают теперь (счетные машины): сер. «Научно-забавная библиотека для семьи и школы», вып. 21. — М.: 1913.
Качевская М. Г. Игра в «шашки»: сер. «Научно-забавная библиотека для семьи и школы», вып. 9. — М.: 1912.
Качевская М. Г., Аменицкий Н. Н. Любопытные перемещения (игры в «хороводы»): сер. «Научно-забавная библиотека для семьи и школы», вып. 10.-М.: 1912.
Качевская М. Г., Аменицкий Н. Н.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.