Математические головоломки и развлечения - [117]
В Соединенных Штатах самыми популярными из игр, для которых необходима специальная доска, являются, конечно, шашки и шахматы. И те и другие имеют долгую и увлекательную историю, их правила время от времени претерпевают неожиданные «мутации» (вряд ли будет преувеличением сказать, что почти в каждой стране существовали свои, национальные разновидности этих игр).
В наши дни американские шашки ничем не отличаются от английских, но в других странах существуют многочисленные не сходные между собой варианты шашек. В большинстве стран Европы в основном приняты так называемые польские шашки (в действительности изобретенные во Франции). Играют в польские шашки на стоклеточной доске, каждый из противников имеет по двадцать пешек, брать пешку разрешается как ходом вперед, так и ходом назад. Пешки с короной (называемые не королями, как в шахматах, а королевами) могут ходить так же, как слон в шахматах. После взятия пешки противника такую «коронованную» пешку можно ставить на любое свободное поле за взятой пешкой. Игра пользуется огромной популярностью во Франции (где ее называют «dames» — «дамки») и в Голландии, ей посвящено много теоретических работ.
В провинциях Канады с населением, говорящим на французском языке, и некоторых областях Индии в польские шашки играют на доске размером двенадцать клеток на двенадцать.
Немецкие шашки (Damenspiel) во многом напоминают польские, но играют в них обычно на английской шестидесятичетырехклеточной доске. Очень близка к немецкой разновидность «малой польской» игры, известная в России под названием «русские шашки». Испанский и итальянский варианты игры ближе к английским шашкам. В турецкие шашки («дама») также играют на доске размером восемь клеток на восемь, но у каждого из противников имеется по шестнадцать пешек, которые занимают первый и третий ряды клеток, считая от соответствующего края доски. Ходить пешки могут вперед, назад, вправо и влево, но не по диагонали. Имеются и другие существенные отклонения как от английской, так и от польской разновидности шашек.
Имя изобретателя и дата возникновения шахмат, правила игры в которые также необычайно разнообразны, неизвестны. Полагают, что эта игра родилась в Индии где-то около VI века нашей эры.
Хотя в настоящее время международные шахматы подчинены единым правилам, в неевропейских странах существует много превосходных разновидностей этой игры, имеющих общее происхождение с международными шахматами. В современной Японии соги, японские шахматы, имеют так же много восторженных приверженцев и почитателей, как и игра го, хотя в западных странах известна только последняя. В соги играют на доске размером девять клеток на девять. Каждый из противников имеет по двадцать фигур.
В начале игры фигуры выстраивают в три ряда. Так же как и в западных шахматах, игра считается выигранной, когда фигуре, которая ходит аналогично королю в наших шахматах, поставлен мат.
Соги имеет любопытную особенность: взятые фигуры противника игрок может снова поставить на доску и использовать их как свои.
Игра в китайские шахматы (цюнь ки) также заканчивается тогда, когда фигура, ходы которой напоминают ходы короля в западных шахматах, получает мат, но правила этой игры сильно отличаются от правил японских шахмат: тридцать две фигуры китайских шахмат стоят на пересечениях вертикальных и горизонтальных линий 64-клеточной доски, разделенной посредине горизонтальным рядом пустых клеток, называемым «рекой». В третьем варианте игры — в корейские шахматы (тьян-кеуи) — фигуры ставят на пересечения вертикальных и горизонтальных линий, доска при этом размечена так же, как при игре в китайские шахматы. Единственное отличие состоит в том, что в корейских шахматах «река» специально не выделена, поэтому внешне доска выглядит как шахматная размером восемь клеток на девять. Фигур столько же, сколько в китайских шахматах, и называются они так же (кроме «короля»).
Построение фигур в начале игры в китайских и корейских шахматах также одинаково, но правила и относительная ценность фигур в той и другой игре различны. Поклонники каждой из трех восточных разновидностей шахмат считают, что любой из двух остальных вариантов этой игры и западные шахматы во многом уступают избранному ими варианту этой древней игры.
Правила игры в «марсианские» шахматы («джетан») разъяснил в приложении к своему роману «Шахматисты с Марса» Эдгар Р.
Бьюрафс. В эту увлекательную игру полагается играть на стоклеточной шахматной доске необычными фигурами и по совершенно новым правилам. Например, принцесса (фигура, приблизительно соответствующая нашему королю) имеет право один раз за игру совершать «побег», что позволяет ей ходить на любое расстояние и в любом направлении.
Кроме многочисленных национальных разновидностей шахмат, современные шахматисты, устав от ортодоксальной игры, изобрели множество самых причудливых игр, известных под названием «необычных», или «фантастических», шахмат. Среди многих игр этого типа, в которые можно играть на обычной доске размером восемь клеток на восемь, назовем лишь двухходовые шахматы, в которых каждый из игроков по очереди делает подряд два хода; игру, в которой у одного из противников нет пешек или, наоборот, вместо ферзя есть лишний ряд пешек; цилиндрические шахматы, в которых левый край доски считается склеенным с правым краем (если доска перед «склеиванием» перекручена на пол-оборота, то игра носит название «шахматы на листе Мёбиуса»); шахматы с переноской фигур, в которых любую фигуру можно водрузить на ладью и передвинуть на другое поле. Были изобретены десятки новых фигур, таких, как канцлер (соединяющий в себе ходы ладьи и коня), кентавр (ходящий одновременно и как слон и как конь) и даже нейтральные фигуры (например, голубой ферзь), которыми могут ходить оба противника. (В научно-фантастическом романе Л. Пэджетта «Необычные шахматы» войну выигрывает математик, любимым развлечением которого служат те самые фантастические шахматы, о которых мы только что говорили. Его разум, привыкший нарушать привычные правила, легко справляется с уравнением, кажущимся слишком сложным его более блестящим, но и мыслящим более ортодоксально коллегам.)
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.
Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.