Математические головоломки и развлечения - [110]

Шрифт
Интервал

Герои романа Герберта Уэллса «Первые люди на Луне» обнаружили, что наш естественный спутник населен разумными насекомообразными существами, обитающими в пещерах под лунной поверхностью. Предположим, что эти существа пользуются единицей длины, которую мы назовем «лунаром». Она выбрана так, что площадь лунной поверхности, лунарах, в частности, совпадает с объемом Луны в кубических лунарах. Диаметр Луны составляет 3476 км.

Скольким километрам равен один лунар?


3. Игра в гугол. В 1958 году Джон Г. Фокс-младший и Л. Джеральд Марни изобрели необычную игру, которую они назвали «гугол». Играют в нее так. Попросите кого-нибудь взять сколько угодно небольших листочков бумаги и написать на них различные положительные числа (по одному числу на каждом листке). Числа могут быть любыми: от самых маленьких дробей до «гугола» — числа, состоящего из 1 и ста нулей, — и даже больше. Листочки ваш партнер раскладывает на столе так, чтобы написанные на них числа были обращены вниз, и вы начинаете по очереди переворачивать их. Дойдя до числа, которое, по вашему мнению, является наибольшим из написанных, вы останавливаетесь. Возвращаться и выбирать числа на уже перевернутых листочках не разрешается.

Если вы перевернули все листочки, то выбрать можете только то число, которое стоит на самом последнем листке.

По мнению большинства, имеется по крайней мере пять шансов против одного, что вы не сможете указать наибольшее число. На самом деле, если вы будете придерживаться оптимальной стратегии, ваши шансы окажутся немного выше одной трети. Возникает два вопроса. Во-первых, в чем состоит оптимальная стратегия?

(Заметим, что она не совпадает со стратегией, стремящейся максимизировать значение выбранного числа.) Во-вторых, если придерживаться оптимальной стратегии, то как подсчитать вероятность выигрыша?

Если имеется только два листка бумаги, то вероятность выигрыша равна 1/2 независимо от того, какой листок вы выберете. С увеличением числа листков вероятность выигрыша (предполагается, что вы придерживаетесь оптимальной стратегии) убывает, но кривая быстро выходит на горизонтальную асимптоту и при числе листков, превышающем 10, изменяется очень мало. Вероятность выигрыша никогда не опускается ниже 1/3. Многие полагают, что, выбирая очень большие числа, они существенно усложняют задачу, однако, как показывает некоторое размышление, величина чисел не играет никакой роли. Необходимо только, чтобы числа на листках можно было расположить в порядке их возрастания.

Игра в гугол имеет много интересных применений. Вот, например, одно из них. Девушка решает выйти замуж до конца года.

Она надеется, что ей удастся встретить десять человек, которые сделают ей предложение (получив отказ, каждый из претендентов на ее руку не проявляет особой настойчивости и от дальнейших попыток добиться согласия своей избранницы отказывается). Какой стратегии следует ей придерживаться, чтобы увеличить свои шансы выбрать самого достойного из женихов? С какой вероятностью она добьется успеха?

Оптимальная стратегия состоит в том, чтобы, отвергнув некоторое число листков бумаги (или предложений), выбрать следующее число, которое превосходит наибольшее из отвергнутых чисел.

Требуется найти лишь формулу, которая бы показывала, сколько листков следует отбросить в зависимости от полного числа листков.


4. Марширующие курсанты и беспокойный терьер. Курсанты военного училища построены в каре (квадрат со стороной 15 м) и маршируют с постоянной скоростью (рис. 187).



Рис. 187К задаче о марширующих курсантах и терьере.


Небольшой терьер, любимец роты, выбегает из середины последней шеренги (из точки А на рис. 187) и устремляется по прямой к середине первой шеренги (к точке В). Достигнув цели, он поворачивает и снова бежит по прямой к середине последний шеренги. К моменту его возвращения в точку А курсанты успевают пройти ровно 15 м.

Какое расстояние пробежал терьер, если предположить, что он двигается с постоянной скоростью, и пренебречь потерей времени при повороте?

Решив эту задачу, которая требует лишь знания элементарной алгебры, вы можете испытать свои силы в решении более сложного ее варианта, предложенного уже известным нам изобретателем головоломок Сэмом Лойдом. В этом варианте задачи щенок бегает не вперед и назад через строй марширующих курсантов, а с постоянной скоростью обегает по периметру квадрата (держась все время как можно ближе к своей роте). Как и в предыдущем случае, к моменту его возвращения в точку А курсанты успевают пройти 15 м.

Какое расстояние пробегает пес?


5. Пояс Барра. Стивен Барр поведал нам, что у его халата имеется длинный матерчатый пояс, концы которого срезаны под углом 45° (рис. 188).



Рис. 188Пояс Барра и один из неправильных способов его укладки.


Готовясь к поездке, Барр сложил халат и хотел как можно туже скатать пояс, начав с одного конца, но косо срезанные концы оскорбляли свойственное ему чувство симметрии. Если он подворачивал уголок, чтобы конец пояса был прямым, то необычная толщина конца при скатывании пояса приводила к уродливым выступам и буграм. Барр пытался прибегнуть к более хитроумным способам, но безуспешно. Одна из таких неудачных попыток показана на рис. 188: на участке А пояс сложен втрое, а на участке В — всего лишь вдвое.


Еще от автора Мартин Гарднер
Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


Рекомендуем почитать
Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.


Том 33. Разум, машины и математика. Искусственный интеллект и его задачи

Уже несколько десятилетий тема искусственного интеллекта занимает умы математиков и людей, далеких от науки. Ждать ли нам в ближайшем будущем появления говорящих машин и автономных разумных систем, или робот еще не скоро сравнится с человеком? Что такое искусственный интеллект и возможно ли в лабораторных условиях создать живой разумный организм? Ответы на эти и многие другие вопросы читатель узнает из данной книги. Добро пожаловать в удивительный мир искусственного интеллекта, где математика, вычисления и философия идут рука об руку.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.