Математические головоломки и развлечения - [11]

Шрифт
Интервал

Вряд ли можно надеяться, что какой-нибудь первобытный дикарь в совершенстве владеет алгеброй логики и может строго следовать правилам вычисления значений истинности булевых функций. С другой стороны, ни один хоть сколько-нибудь проницательный лжец не даст себя одурачить столь просто. Поэтому помимо двух уже названных категорий лжецов необходимо ввести в рассмотрение еще один их тип — лжеца, действующего с заранее обдуманным намерением, который всегда старается ввести того, кто с ним разговаривает, в заблуждение. Имея дело с таким противником, логик может в лучшем случае надеяться на то, что ему удастся максимально увеличить вероятность благоприятного исхода (то есть правильного выбора дороги). Ни один логический вопрос не может гарантировать успеха, ибо если лжец намеренно старается ввести своего собеседника в заблуждение, то, следуя своей тактике, он может обманывать его, нарушая при этом правила логики. В такой ситуации для логика важнее всего, чтобы избранная им тактика была психологически обоснованной. Такая линия поведения вполне допустима, поскольку, будучи примененной против «честного» лжеца и просто лжеца, она приносит еще больший эффект, чем в случае не столь легко поддающегося на удочку лжеца, намеренно вводящего собеседника в заблуждение.

Учитывая все сказанное, мы предлагаем в качестве наиболее общего следующий вопрос или его моральный эквивалент: «Известно ли вам, что в этой деревне пивом угощают бесплатно?» Правдивый туземец ответит «нет» и тотчас же отправится в деревню, а логик не спеша последует за ним.

Просто лжец и «честный» лжец ответят «нет» и также отправятся в деревню. Лжец, любящий вводить своих собеседников в заблуждение, будет исходить из предпосылки о том, что путешественник тоже любит морочить головы доверчивым слушателям, и изберет тактику в соответствии с этим предположением. Движимый двумя противоположными мотивами, лжец может попытаться убить двух зайцев, ответив, например, так: «Бр-р! Я терпеть не могу пива!» — и тут же побежать в деревню. Хорошего логика этим не проведешь. Достаточно предусмотрительный лжец, поразмыслив, поймет неубедительность такого ответа и, быть может, из любви к искусству решит пожертвовать своими интересами и пойдет по неправильной дороге. Лжец одержит победу по очкам, но зато логик сможет по праву отпраздновать моральную победу, ибо лжец наказан: его теперь гложет подозрение, что он упустил бесплатное пиво.

5. Узнать содержимое всех коробок можно, вынув всего лишь один шар. Ключ к решению кроется в том, что все таблички на коробках не соответствуют их содержимому и вы об этом знаете.

Предположим, что шар извлекается из коробки с надписью «ЧБ».

Пусть вынут черный шар. Тогда вам ясно, что второй шар также черный, иначе табличка была бы правильной. Но раз вы нашли коробку с двумя черными шарами, вы сразу же можете назвать содержимое коробки с этикеткой «ББ»: в ней не могут находиться два белых шара, иначе табличка соответствовала бы содержимому коробки; в ней не могут находиться и два черных шара, поскольку вы уже нашли коробку с двумя черными шарами; таким образом, в ней должны быть один черный и один белый шар. В третьей коробке, естественно, должны быть два белых шара. Аналогичным образом задача решается и в том случае, если шар, вынутый из коробки с надписью «ЧБ», оказался не черным, а белым.

6. Решение головоломки опирается на маленькую хитрость в расписании поездов. Оно составлено так, что поезд, следующий в Бронкс, всегда прибывает на минуту позже бруклинского, в то время как интервалы движения обоих поездов одинаковы — 10 минут.

Отсюда ясно, что поезд в Бронкс прибудет раньше бруклинского только в том случае, если молодой человек явится на вокзал в течение этого минутного интервала. В любое же другое время (то есть в течение девятиминутного интервала) бруклинский поезд будет прибывать первым. Поскольку молодой человек приходит в совершенно произвольные моменты времени, он с вероятностью 0,9 отправляется в Бруклин.

7. Разрезать куб менее чем шестью распилами нельзя. Это становится ясным, если вспомнить, что у куба шесть граней. Каждый распил означает проведение плоскости, то есть при каждом распиле появляется не более одной новой грани куба. Чтобы выпилить маленький кубик в самом центре большого куба (это единственный кубик, у которого вначале нет ни одной готовой грани), нужно провести шесть распилов. Эту задачу придумал Ф. Хоуторн.

Кубы размером 2х2х2 и ЗхЗхЗ — единственные в том смысле, что, как бы вы ни складывали их части, прежде чем произвести очередной распил (разумеется, если при этом каждая часть куба где-то распиливается), все равно, пока кубы не распадутся на единичные кубики, первый придется пилить три раза, а второй — шесть.

Для куба 4x4x4 понадобится провести девять распилов, если его части все время будут составлять куб. Переставляя их перед каждым распилом, можно уменьшить число последних до шести.

Складывая куски куба, нужно следить за тем, чтобы каждый из них распиливался как можно ближе к середине, тогда число распилов будет минимальным. В общем случае для куба


Еще от автора Мартин Гарднер
Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.