Магия чисел. Математическая мысль от Пифагора до наших дней - [9]
Толчок к первоначальному развитию арифметики у вавилонян дали шумеры. Шумеры – высокоодаренный не-семитского происхождения народ, проживавший на плодородных землях в северной части Персидского залива. К числу других выдающихся вкладов в развитие цивилизации следует отнести шумерское силлабо-идеографическое письмо, которое впоследствии трансформировалось в клинообразное письмо вавилонян. Нечто похожее имело место и в плане сохранения и передачи арифметики. Около 2500 лет до н. э. шумерские купцы уже были знакомы с применением арифметики при взвешивании и измерении, начислении процентов по займам и оформлении документов на то, что сейчас мы бы назвали краткосрочными коммерческими кредитами. Эффективное использование ими чисел позволяет предположить длительную предысторию развития, возможно тысячелетнюю. Около 2000 лет до н. э. шумеры были ассимилированы семитами-вавилонянами, и наступила золотая эра вавилонской математики. Она продолжалась целых восемь веков.
Счет вавилонян базировался на шестидесятеричной системе исчисления (шестью десятками) с легкой примесью десятичного счета (десятками). Базовые 60 выжили в нашем отсчете времени, как и в наших градусах, минутах и секундах при измерении углов. Как целые числа, так и шестидесятеричные дроби были представлены в клинописном виде в системе исчисления по разрядам (на базе 60), в значительной степени, как записываются наши собственные числа и десятичные дроби (на базе 10) простыми символами 0, 1, 2… 9. В один прекрасный момент, неизвестно когда, но, скорее всего, в конце наивысшей стадии расцвета цивилизации, появился символ, соответствующий нашему нулю. Уже одно это стало прорывом первостепенной важности.
И хотя это представляет куда больший интерес для истории математики, чем для более узких целей данного исследования, мы можем бегло отметить, что развитие арифметики вполне естественно вело к открытию правил квадратных, кубических и биквадратных уравнений. Пусть вавилонские специалисты по алгебре не умели полностью и свободно решать произвольные уравнения, как это делают сегодня в алгебре для высшей школы, но они достигли значимого успеха. Отдельные историки математики ставят вавилонскую алгебру 2000–1200 годов до н. э. выше всего, созданного до XVI века н. э. Достижения в области геометрии и измерений просто поражают. Хотя результаты по большей части отличаются корректностью, следов доказательств не обнаружено. Отсутствие доказательств вызывает интерес с позиций исторического развития интеллекта и философии.
Одна, внешне незначительная, но в историческом плане очень важная деталь в арифметике вавилонян всплывает при приближении к временам Платона. Большие числа, и в частности одно число, видимо, привлекали их внимание. Число, о котором идет речь, – это 12 960 000, или четвертая степень числа 60 (60 × 60 × 60 × 60). В шестидесятеричной системе это число соответствовало бы десяти тысячам (четвертой степени базового числа), наши десять тысяч есть 10 000 (10 × 10 × 10 × 10). Их число могло использоваться, как греки использовали по случаю наше, дабы подчеркнуть невероятно огромное число. Но использование Платоном вавилонских «десяти тысяч», как будет продемонстрировано позднее, было несравненно более окрашено богатым воображением.
Одним из источников всего таинственного, что шло от этого числа для магов и им подобных, являлось количество его делителей. Включая 1 и само число, вавилонские «десять тысяч» (12 960 000) имеют 225 делителей, наши же десять тысяч (10 000) насчитывают жалкие 25. Если для метафизиков этого намека на вечно воскресающую вселенную недостаточно, стоит всего лишь обратить внимание, что 225 (общее число делителей 60 в четвертой степени) есть 9 × 25, а 9 – это 3 раза по вездесущей и святой во все времена 3. Если и этого недостаточно, заметим, что четвертая степень от 6 (6 × 6 × 6 × 6, или 1296) имеет то же самое число делителей (25), как и четвертая степень 10. При этом четвертая степень от 10 есть десять тысяч у греков и у нас с вами, в то время как 12 960 000 есть «десять тысяч» у вавилонян, что составляет четвертую степень от 6, умноженную на четвертую степень от 10. Разве не должна ощутимая космическая истина скрываться в подобной таинственной гармонии чисел? Скрывается она или нет, но пространные философские рассуждения о человеке и вселенной выводились из перетасовки чисел совсем не столь плодовитых, сколь приведенные выше. Будет забавно теперь внимательнее посмотреть на всю их абсолютно бесполезную чепуху.
Во времена колонизации Америки да и еще какое-то время в XIX веке школьники выпускных классов по арифметике бились над следующей головоломкой. «Земельное владение общей площадью 1000 квадратных футов состоит из двух участков. Две трети длины стороны одного квадратного участка больше в 10 раз длины стороны другого квадратного участка. Рассчитайте стороны участков». Алгебра дает два ответа: стороны участков равны 10 и 30 футам, или – >270/>13 и – >310/>13 фута. Арифметика разумно останавливается только на первом варианте.
Неоправданно забытая американская классика «счета в уме» впадала в ярость от этих ужасов. Отважные парни, кому удалось решить данные задачи в уме (они могли получить только первый вариант ответа, второй – просто бессмысленный вздор), видимо, проходили школу более сурового воспитания, чем мертвенно-бледные неженки, которые позднее изводили уйму карандашей и бумаги и переворачивали учебники алгебры в поисках обоих ответов. Существовали более несносные задачи, чем приведенный пример, вроде задачки о сбежавшем военнопленном, имевшем с собой запас еды и питья только на два дня, которому предстояло пересечь безводную пустыню шириною сто миль бросками по десять миль в день. Но какими бы разными ни казались задачи, все они имели четыре общие черты. Они могли быть решены простыми арифметическими действиями любым, кто довольно прилично разбирался в школьной арифметике. Много легче они решались теми, кто обладал лишь весьма скромными знаниями в элементарной алгебре, и они были замысловато надуманны и лишены всякого практического смысла, и они нравились ученикам выше среднего уровня.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.