Магия чисел. Математическая мысль от Пифагора до наших дней - [128]
Язык участников дебатов должен был неизбежно стать даже еще проще. Время от времени снисходительная ремарка, какую и сам Пифагор мог бы вставить, возвращала спор на безличный уровень, общепринятый в современных научных дискуссиях. Следует процитировать одну такую реплику Поля Адриена Дирака, одного из создателей новейшей квантовой теории, как образчик того, что эпистемологически достижимо. Число 10>39 – это единица с 39 нулями. «Мы можем принять за общий принцип, – утверждал Дирак, – что все большие числа порядка 10>39, такие как 2 × 10>39, 3 × 10>39…, обращаясь к общей физической теории, не говоря уж о простых числовых коэффициентах, равны t, t × t…, где t есть современная эпоха, выраженная в атомных единицах. Простые числовые коэффициенты, встречающиеся здесь, должны быть детерминированы теоретически, когда мы имеем всестороннюю теорию космологии и атомарности. Таким образом, мы избегаем потребности в теории для детерминирования чисел порядка 10>39».
Возможно, именно этот таинственный намек на появление новой теории, способной заменить и физику и нумерологию, вызвал самые острые возражения за все время и без того оживленных дебатов. Не давая заманить себя в туманное будущее приманкой несуществующей, но «всесторонней теории космологии и атомарности», Дингл напомнил участникам основную тему дискуссии. «Но сейчас мы пытаемся ответить на вопрос, – напомнил он своим оппонентам, – что должно стать основой научных знаний: наблюдение или изобретение. Ньютон не страдал недостатком воображения, но он предпочел изучать гальку, а не следовать за гадаринскими свиньями, даже если океан пред ним и был истиной. Милн же, как и Дирак, напротив, с головой погружается в океан «принципов» собственного творения и либо совсем игнорирует гальку, или относится к ней как к помехе. Вместо того чтобы выводить принципы из явлений, нам преподносят псевдонауку бесхребетной косМИФологии и приглашают совершить самоубийство, чтобы избежать необходимости смерти. О, что за гордые умы сражены, надежда и цвет державы, которая еще недавно была так радостна, но в которой сейчас столько гнили, что самый совет по выборам [в Королевское Лондонское научное общество] должен был бы разорвать свою хартию и думать, что он делает это ради пользы науки».
На случай, если аллюзии в этом несколько агрессивном обвинении пифагорейцев ускользнули от понимания, вернемся к ним. Океан и галька, к которым отсылает слушателей Дингл, – это все из ньютоновского рассуждения в конце жизни, когда он оценивал себя: «Я не знаю, какое впечатление я произвожу; но самому себе я кажусь похожим на маленького мальчика, играющего на берегу. Я изредка забавляюсь тем, что нахожу особенно гладкую гальку или особенно красивую ракушку, тогда как великий океан непознанной истины простирается передо мной». Гадаринские свиньи, согласно святому Марку, «неистово бежали вниз по крутому склону в море и утонули там», после того как «все бесы», которых Иисус предварительно изгнал из бесновавшегося, получили от него разрешение «переселиться в свиней». Но шекспировский клинок разит больнее. Эффект был бы сильнее, если бы Дингл включил еще одну строфу. Физик-эпистемолог – это сумасшедший Гамлет, который только что объяснил Офелии (предположительно, экспериментальной науке): «У нас не будет больше свадеб… К монашкам, в монастырь ступай!» На это смущенная и расстроенная Офелия отвечает: «О, что за гордый ум сражен! <…> Цвет и надежда радостной державы…» Или это Милн и/или Эддингтон, который перестал быть «самым наблюдательным из всех наблюдателей» («the observed of all observers»), и есть Гамлет? «В которой сейчас столько гнили» конечно же попало в физику из «Гамлета» через «Датское королевство», родину Нильса Бора, одного из самых бесстрашных новаторов в теоретической физике XX века. Хотя не совсем понятно, кто есть кто и что есть что в обвинении Дингла, но любой ценитель должен восхититься этим небольшим шедевром высокохудожественного проклятия. И не только потому, что это «послание галатианцам» с «двадцатью девятью особыми проклятиями» спрессовало в столь малом объеме столько негодования. То, что человек науки может вкладывать столько души в чисто научный вопрос, является хорошим знамением для будущего науки. Физика не умрет от чрезмерной вежливости, пока ее почитатели волнуются о ней и выражают себя так же экспрессивно, как они обсуждают ошибки своих партнеров по бриджу.
Игнорируя «свиные» выпады в свой адрес, Милн опять спокойно отстаивал свою позицию. Рассказывая о своей теории, заменяющей теорию относительности, он утверждал, что «удивительно, но исключение дополнительных эмпирических обращений вполне выполнимо, как бы несовершенна ни оказывалась теория в своем нынешнем состоянии. Никто не был больше удивлен этому, [чем я сам]. Это – не априорная вера, над которой насмехаются; это полученный из опыта факт, с которым нужно считаться, что, когда мы таким образом устраняем подобные эмпирические обращения, выявляются закономерности (как логическое следствие [моей] гипотезы), которые выполняют роль тех самых законов природы, которые продолжают наблюдаться и соблюдаться. Эти закономерности имеют логический статус теорем, а итоговая логическая структура имеет статус (или получит таковой, если окажется безукоризненной) абстрактной геометрии, основанной на аксиомах».
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.