Магия чисел. Математическая мысль от Пифагора до наших дней - [129]
Внимательный слушатель мог бы расслышать легкие приглушенные аплодисменты по крайней мере двоих экспертов в аудитории, которых никто официально не приглашал, но которые сами вызвались оценить полемику сторон. «Я всегда говорил им это», – прошептал Платон, одновременно с Кантом, произносившим ту же фразу. Из уважения к их общему ученику они прекратили шептаться, поскольку Милн продолжил анализировать проблему «происхождения законов природы».
«Эмпирическая физика, – заявил Милн, – не в силах взяться за эту проблему». Проблема появляется с «убеждения, что вселенная рациональна». Следовательно, это современное эхо мечты Пифагора. Милн объяснял свое понимание реального решения проблемы. «Под этим я под разумеваю, что, получив простую формулировку в ответ на вопрос «Что такое?», можно путем умозаключений легко вывести законы, удовлетворяющие условию. <…> Мы можем проверить это убеждение только путем отрицания, исследуя возможность выведения из некоторого принятого описания, каков характер законов, которым подчиняется «Что такое?», избегая, насколько возможно, всех обращений к опытным путем установленным законам. Законы природы были бы тогда не более случайны, чем геометрические теоремы. Создание Бога оказалось бы подчинено законам, которые не находятся в распоряжении Бога. Законы стали бы отражением мирового порядка». Несомненно, мы уже частично слышали это от последователей Аристотеля, логиков Средневековья.
Как и ожидалось, гадаринцы Дингла отказались «тонуть в море» без сопротивления. Конечно, некоторые из них отважно боролись и благополучно достигли суши. После любезного признания «занимательного выступления Дингла» Эддингтон «немного убавил риторику», перед тем как попытался совсем отказаться от нее. Эддингтон – физик, и в его ответе речь идет о Галилее и его взглядах, но никак не о галилеянах, жителях Галилеи, как в тех первоисточниках, из которых Дингл почерп нул свое нелестное сравнение. «Моя точка зрения, – объяснил Эддингтон, – представляет определенный контраст представлениям Галилея; и я чувствую большое удовлетворение оттого, что потряс несгибаемых последователей [Дингла] школы Галилея <…> После довольно обширного ряда исследований я обнаружил, что большая часть современной физики выводима априорным доказательством и потому не составляет знание реально существующей вселенной».
Ропот одобрения, который раздался на этой словесной дани «априорному», шел от Канта. Это прошло незамеченным, поскольку Эддингтон перешел к N – внушительному числу 2.136 × 2>256, которое он вывел в 1937 году на основе своих эпистемологических принципов в качестве общего количества частиц во вселенной. «Когда квантовый физик выражает числом количество частиц в системе, не важно, малое или большое, он дает число, на которое рассчитывает квантовая арифметика. Мировая константа N – число квантовой арифметики; она не могла бы иметь никакого другого значения, поскольку арифметика Пифагора не участвует в этом заезде. <…> Мы обнаруживаем, что в соответствующей [квантовой] арифметике целые числа начинаются только от 1 до 2.136 × 2>256. Таким образом, мы можем получить число «всех частиц, которые существуют» из нашего априорного знания арифметики, которая используется для их подсчета. С философской точки зрения мы развенчали N».
Пифагор мог бы ответить, что, хотя его арифметика (или нумерология) и «не участвует в забеге», по существу, именно он с постоянством легко выигрывает в любом состязании с соперниками, не важно, чемпионами или неудачниками, как только что продемонстрировал выдающийся ниспровергатель.
Чрезмерно самоуверенный тон ведущих пифагорейцев не проходил незамеченным даже для сочувствующих им, и кое-кто попытался слегка умерить их пыл. Так, способный коадъютор Эддингтона, релятивист Уильям Хантер Маккри, возможно почувствовав нарастающую напряженность дискуссии, спросил: «Тогда получается, что мы можем вообще обойтись без всяких других гипотез, то есть что все остальные гипотезы будут появляться в соответствии с соглашениями мысли или выражения мысли? Теорию Эддингтона… назовем ее так, фактически можно расценить как усилие, предпринятое в этом направлении. Боюсь, однако, что я, возможно, безрассудно вторгся в сферу, куда и ангелы боятся ступить».
Менее робкие новые участники рвались участвовать в полемике, и ветераны стали выступать по второму разу. Из тех, кто еще не выступал, биолог-марксист Джон Бердон Сандерсон Холдейн внес одну из наиболее интересных тем на обсуждение, вероятно, потому, что он видел пифагореизм с выигрышной позиции, недоступной физикам. Будучи квалифицированным специалистом в области математической генетики и столкнувшись с пределами использования математического умозаключения в биологических науках, Холдейн более объективно судил об использовании математики в науке, чем те, у кого отсутствовал подобный опыт. Биолог отверг эпистемологическую физику и астрономию, заметив, что гипотеза Милна «показалась бы фантастической Аристотелю, Птолемею и святому Фоме».
За Холдейном выступил Гарольд Джеффрис, известный своей работой по научным умозаключениям, который предложил сдержанный диагноз современного пифагореизма в целом. «Я полагаю, – отважился заявить он, – что источник всех бед состоит в убеждении, что у математики имеется некоторое особое преимущество. Вместо того чтобы быть оцененной такой, какова она есть, а именно инструментом для суждений слишком сложных, чтобы быть переданными без нее, математика окружена эмоциями до такой степени, что многие думают, будто ничто, кроме математики, не имеет никакого смысла; тогда как, по мнению некоторых из лучших чистых математиков, характерной особенностью математики является то, что она сама по себе имеет смысл…Ее назначение – соединить постулаты с наблюдением». Но, как мы видели, другие «лучшие чистые математики» по-прежнему верят, что «математическая реальность лежит вне нас».
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.