Магия чисел. Математическая мысль от Пифагора до наших дней - [126]
Прокручивая в уме этот релятивистский постулат снова и снова, мы легко убедим себя, что это трюизм (банальность), возможно необходимое логическое последствие простых значений ключевых слов «направление» и «постоянная скорость». Поверив этому, мы увидим, что постулат – более или менее вопрос грамматики и синтаксиса или, если кому-то больше нравится, семантики. О чем это говорит? На самом деле это ничего не говорит о мире чувственного опыта, кроме, возможно, утверждения, согласно которому «его невозможно обнаружить». Последнее подразумевает наблюдателя или «обнаруживателя», который, как предполагается, пытается что-то сделать. Игнорируя «наблюдателя» (ему придется проводить наблюдения до скончания века, чтобы установить «невозможность»), сделаем следующий очевидный шаг и идентифицируем правильный синтаксис с правильным рассуждением. Тогда становится ясно (возможно, обманчиво), что постулат являлся потребностью разума; строение нашего разума таково, что не представляется никакой альтернативы. Поэтому можно справедливо полагать, будто мы обнаружили один из «эпистемологических принципов» физики.
Продолжая подобным образом постигать все признанные фундаментальными законы физики, мы обнаружим, что еще несколько из них легко представить (в интересах экономии мысли) как потребность для любого последовательного рассуждения относительно «внешнего мира». Но если оглянуться на историю физики со времен Галилея и Ньютона, то можно вспомнить, что все чрезвычайно значимые законы были выведены только после десятилетий кропотливого наблюдения и утомительных опытов. Теперь, когда вся тяжелая работа успешно осталась позади, мы признаем, словами пифагорейцев, ее полную ненужность. Если бы наши предшественники достаточно занимались самоанализом и вникали в суть, они упрятали бы подальше и все эти наблюдения, и все эти опыты. Правда (не эпистемологический трюизм), состоящая в том, что некоторые греческие ученые и философы, да и немало средневековых логиков именно этим и занимались и открывали немногим меньше тех, кто подтверждал все чувственным опытом, стоит особняком. Возможно, современники будут более успешны, если только не постфактум.
Даже если эпистемологическому методу в науке не суждено найти ничего нового, это, по крайней мере, покажет, что кое-что из старого более очевидно, нежели предполагалось. Любое сокращение лишних гипотез можно считать удачей. Но похоже, слишком оптимистично ожидать, как больше чем полдюжины ведущих ученых за каких-то тысячу лет достаточно усовершенствуют самосозерцательную технику, чтобы делать новые научные открытия. В конце концов всеобщая теория относительности (без сопровождающего математического аппарата) могла бы быть высказана еще Пифагором. И все же Платон просмотрел ее, и Аристотель, и Ньютон, и Максвелл, и сотни других, кто мог, но не сумел.
Окончательная цель современных пифагорейцев по существу та же, какую преследовали их древние предшественники. Они стремятся обнаружить систему вполне математических утверждений, подводящих итог всего узнаваемого о физической вселенной, и способную к предсказанию всех физических событий. В данном случае термин «физический» используется, чтобы исключить все живое. Чем меньшее количество утверждений потребуется, тем лучше; одно – это идеал. Весь «внешний мир» будет тогда навсегда уменьшен до одной великой математической формулы. Это объединяет мечту Пифагора и амбиции Лапласа. И ничего больше не надо будет ни открывать, ни выдумывать. Но имеется различие, которое Кант оценил бы: комплексная формула должна быть найденной в самом разуме. Все законы неодушевленного мира будут тогда очевидны интуитивно без обращения к чувствам. Не зря же жил Платон.
Предвкушение, каким может быть результат, появилось у Эддингтона в 1936 году, в его впечатляющей и наводящей на размышления «Теории относительности протонов и электронов». Поскольку доказательство (329 страниц) техническое, мы можем представлять только несколько заключений, выбрав интересные с точки зрения формирования независимого мнения о самой работе. Начиная с 1936 года появились существенные модификации теории, но ни одной, имеющей целью уничтожить характерные особенности. Новые открытия легко добавлять там, где необходимо квалифицированное дополнение.
Эддингтон обращает внимание, что имеются некоторые признанные «мировые константы» для описания природы, семь из которых обычно считаются фундаментальными для физики и космологии. Три: масса протона, масса электрона и заряд электрона – пожертвованы атомной физикой; одна – постоянная Планка – квантовой теорией; и еще три: скорость света, «гравитационная постоянная» и «космическая постоянная» – релятивистской физикой и космологией. Математические выражения этих семи констант содержат буквы, обозначающие произвольные единицы «длины», «времени» и «массы». Элементарной алгеброй эти произвольные три легко исключены. Семь констант, таким образом, производят простые, и только «четыре» из чистых чисел, напоминающих нам о Пифагоре и Эмпедокле. Одно из этих четырех – большое число N, которое декларировано как «число частиц во вселенной». Другое, очень известное, является главным числом 137, основа «тонкоструктурной постоянной» спектроскопии. Мы возвратимся к 137 через мгновение. Еще одно число – отношение массы протона к массе электрона, это – рациональное число. Протон и электрон – элементарные частицы, из которых, как полагают, состоят атомы. Оставшееся чистое число, предоставленное фундаментальными константами природы, столь же интересно, но уже скорее технически.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.