Магия чисел. Математическая мысль от Пифагора до наших дней - [111]
Если «Евклид» был настолько ложен, насколько его представил Саккери в отчаянной надежде, что его судьбоносное открытие никогда не исчезнет вместе с ним, все-таки он пролежал на расстоянии вытянутой руки от молодых поколений, не будоража ничью мысль. В новой геометрии Саккери рассуждения столь ясны и убедительны, что практически любой рациональный ум, следуя доказательствам, легко поддался бы соблазну и пришел к кощунственным мыслям. Так или иначе, но книга оказалась под сукном, в интересах сиюминутной безопасности, как и следовало ожидать в условиях консервативной политики. Тема была крайне опасна для некоторой части попечителей, а если в организации происходит раскол, у нее остается мало шансов выжить. Но в такие судьбоносные моменты опасливые люди откладывают на потом свои незапланированные альтернативные умозаключения. Они упускают из виду, что отдельные свободомыслящие умы вне пределов их влияния и власти начнут независимо приходить к объективным открытиям и публиковать их для всемирного обозрения, и таким образом сами у себя крадут славу, которую, возможно, получили бы, будь они хоть немного смелее. Так было с Саккери.
Когда «Евклид» наконец впервые появился на свет в 1889 году, неевклидовы геометрии уже занимали свое место в математической иерархии. Никакого ужасающего всплеска религиозного скептицизма не последовало с их приходом. Даже профессиональные математики не спешили рассуждать о том, к чему приведет сосуществование нескольких обособленных, несовместимых между собой, самодостаточных геометрий для будущего платоновского реализма математических истин, в который практически большинство из них продолжало верить. Кардинальная революция, свергнувшая астрономию Птолемея, прошла практически незамеченной. Свержение абсолютизма Евклида меняло весь образ мыслей, а не только устаревшее описание Солнечной системы. То, что было невозможно представить до построения Саккери своей геометрии, стало работающей теорией для тысяч, чьим занятием было думать, чтобы другие действовали. Математические истины и математические формулировки научных принципов стали чисто земного происхождения, они перестали быть небесными неизбежностями, а просто удобными для людей инструментами. Ни в математике, ни в естествознании больше не осталось никаких абсолютов.
С этого момента утрата веры в вечные истины и абсолюты перекинулась, но не сразу, а исподволь, на логику и метафизику, а от них и на весь авторитаризм. Хвастливое высказывание Хенли наконец-то приобрело значимость: «Я хозяин своей судьбы, я капитан своей души». И фраза «вечный дух свободного ума» приобрела значение. Мозг человека стал свободен, как он того хотел, а человечество теперь получило возможность отбросить бирюльки и стать теми, кем должно быть.
Вероятно, те, кто убрал от греха подальше «Евклида» Саккери, предвидели, что случится со всеми абсолютами, если работа будет напечатана, и испытывали благоговейный страх перед преждевременным претворением в жизнь неизбежного. Другие совершили аналогичную ошибку в отношении революции Коперника. Вместо того чтобы вставать второй раз на грабли, невнимательный инквизитор, ответственный за утрату работы Саккери, должен был реабилитировать своих предшественников, отважно заявив о надвигающейся революции, более подрывной, чем в случае с Коперником. Он мог бы даже наградить Саккери, своего подчиненного, вполне заслуженным титулом Коперника мысли.
Жизнь человека, который в конце концов представил миру неевклидову геометрию, – это еще одна история успеха в относительно маловажных вещах, завершившаяся личным разочарованием в своих амбициях. Будучи хорошо осведомленным об огромной значимости своего свершения, Лобачевский умер практически не узнанный теми, кто мог по достоинству оценить его труды, и лишенный милости мелких чиновников, которым он вынужден был подчиняться.
Нет нужды перечислять здесь всех, кто пытался опровергнуть постулат Евклида о параллельных прямых на основе его же предположений. Астроном Птолемей в I веке до н. э. оказался одним из первых, но даже у него были предшественники. В IX–XIII веках за ним последовали несколько мусульманских геометров, и среди них персидский математик и поэт Омар Хайям, но они не сумели продвинуться дальше Птолемея. Омар Хайям шел тем же путем, что и Саккери. Но не сильно продвинулся. Мусульман сменили итальянские геометры XVI и XVII веков, которые тоже пришли к неутешительному выводу. Кое-кто, включая известного английского математика Джона Уоллеса (1616–1703), который сделал это в 1693 году, заменяли пятый постулат Евклида другим эквивалентным предположением. Через сорок лет после попытки Уоллеса Саккери застрял в том же тупике, в котором исчезали все его предшественники, хотя он двигался с несравнимо большей осторожностью, чем они. Но он тоже верил, что предположение Евклида верно. В поисках истины Саккери, как и все остальные, кто занимался этим ранее, проявил недостаток смелости или воображения, чтобы выполнить поворот кругом и просто сойти с тропы, ведущей в никуда. Чтобы заподозрить, что требуемое доказательство постулата Евклида о параллельных прямых невозможно, надо было иметь такую смелость и такое воображение, какие нашлись у Коперника, когда тот сместил нашу планету из центра Солнечной системы. Саккери не хватило обыкновенной решимости обосновать свое подозрение, создав самостоятельную геометрию, отвергающую постулат Евклида.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.