Магия чисел. Математическая мысль от Пифагора до наших дней - [113]

Шрифт
Интервал

Успех Лобачевского, оспаривавшего аксиомы, был подхвачен другими. Нельзя утверждать, что его пример ускорил чей-то успех, следовавший за ним, поскольку его работа пребывала в полном забвении почти тридцать лет. В 1840-х годах, например, Уильям Роуен Гамильтон заменил одну из базовых аксиом классической алгебры. Аксиома «Порядок, в котором два числа умножаются друг на друга, не оказывает влияния на результат» необходима для классической алгебры. В алгебре, развитой Гамильтоном применительно к физическим наукам, эта аксиома была опущена. Казалось странным, что Гамильтон, живший почти тридцать лет спустя после Лобачевского, опубликовал свою работу и даже умер, не ведая о существовании неевклидовой геометрии. Но в свете личного успеха Гамильтона этот пример наглядно демонстрирует, что математики-созидатели как класс наконец-то начали осознавать неотъемлемую свободу собственных усилий. Когда же в итоге глубинное значение трудов Лобачевского и Гамильтона было оценено, замена аксиом в математике стала одним из общедоступных методов совершения прорывов. Свободные открытия расцвели без ограничений, не сдерживаемые традицией, и математика вступила в период беспрецедентной экспансии. Ближе к концу XIX века Георг Кантор смог выразить убежденность большинства математиков-созидателей в афоризме, ныне ставшем знаменитым: «Суть математики в ее свободе».

Согласен, сказал бы реалист, последователь Платона. Но что такое свобода математики? Разве все эти странные геометрии и причудливые алгебры не находились уже в вечном существовании прежде, чем математики «открыли» или «увидели» их? Разве они не были известны смертным потому, что математики были слепы к окружающему миру? Против столь упорного желания поверить в недоказуемое и никогда недостижимое, не сказать бесполезное, рациональный скептицизм бессилен, а здравый смысл будет напрасно стараться. Пусть верят, если хотят, скажет натуралист.

Те, кто устойчив в своей вере, что «математическая реальность лежит вне нас», имеют хотя бы один неоспоримый аргумент в свою защиту. Открытие может быть свободным, отмечают они, но свободным только в рамках закона. Этим законом является логика, какой она развивается в математике со времен Фалеса. Но как уже было показано, этот предположительно жесткий закон сам без конца меняется. Это не проблема для непоколебимого реалиста: изменение само испытывает действие более высокого закона, который, в свою очередь, подпадает под действие еще более высокого закона, и так далее, вплоть до того недосягаемого, который и является Абсолютом.

Свобода, которой, как представлял Лобачевский, он обладал, создавая свою геометрию, была иллюзией. Это Абсолют диктовал каждый шаг геометру. «Суть математики» не в свободе, как утверждал Кантор, а в служении деспотизму, навеки недосягаемому для человечества. Опять же, пусть верят те, кто хочет верить.

Глава 26

Меняя взгляды

Не многие философы сумели противостоять искушению применить собственную философию, иногда с пагубными результатами, к основам математики. Простейшая арифметика и начала геометрии казались большинству метафизиков предметами первой необходимости для любых логически последовательных явлений физической материи. Поэтому, если некая явно сложная система знаний не в состоянии объяснить видимую неизбежность чисел и простейших геометрических теорем, она остается малоубедительной.

Амбициозные в разумных пределах метафизики попытались каким-то образом дать рационалистическое толкование таким постоянным головоломкам, как «пространство» и «время». В противном случае физическое естествознание осталось бы без философских оснований. Если бы в дополнение к этому удалось «пространство» и «время» привязать к общепринятым геометрии, арифметике и физике конкретной эпохи, то соответствующая метафизика усложнила бы почти все вокруг. Когда «законы мысли» (классическая триада Аристотеля: тождество, исключенный третий и противоречие) были также включены во всевышний синтез, метафизика для всей философии, за исключением двух принципиальных деталей, стала завершенной. Теория этики, морали, полезности и аргумент в пользу существования Бога должны были быть представлены в системе.

Всего этого достиг Иммануил Кант, живший в 1724–1804 годах. Если отдельные части его колоссальной системы не производят должного впечатления на математиков и естествоиспытателей нашего времени, в отличие от их предшественников XVIII и XIX веков, то только потому, что как естествознание, так и математика стали в наше время более динамичными, чем они были в 1781 году, когда Кант опубликовал свою «Критику чистого разума». Какая бы дата ни была на календаре, ни естествознание, ни математика сегодня не являются всецело такими, какими были вчера. Да и сам Кант, без сомнения, частично признал данный трюизм как решающий фактор в постепенном устаревании универсальной философии, когда заявил, что ничто не являлось более разрушительным для философии, чем математика. Поскольку философия Канта долгое время была самой долговечной из математических философий со времен Платона и продержалась еще и в XIX веке, следует описать ее в нескольких штрихах в качестве нашей дани уважения великому философу прошлого.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.