Магия чисел. Математическая мысль от Пифагора до наших дней - [109]
Если любое из двух предположений подразумевает другое, то говорят, что предположения эквивалентны. Иными словами, предположения А, В эквивалентны, если А подразумевает В, а В подразумевает А. Если одно из предположений доказано, следовательно, доказано и второе.
Вернемся к пятому постулату Евклида, который является предположением о существовании параллельных прямых. Он намного сложнее любых других постулатов Евклида, и если Евклидова геометрия рассматривается как абстракция чувственного опыта, то нет видимых причин поверить, что пятый постулат должен быть универсальной истиной в этом опыте. Следует установить, что при измерении, например, очень больших расстояний, какие бывают в астрономии, опыт может противоречить отдельным эквивалентам пятого постулата. Один такой эквивалент – полезное предположение, которое Декарт рассматривал как вечную неизбежность: сумма углов любого плоского треугольника равна двум прямым углам. Гаусс, как ни странно, предполагал астрономический тест этому предположению как средство для принятия решения, является ли геометрия Евклида правильным мерилом «пространства», определенного для опыта. По причинам, в которые лучше не вникать, опыт никогда не был проведен, а если бы это случилось, он бы не был достаточно тщательно проведен, чтобы урегулировать проблему.
Еще более достоверный эквивалент пятому постулату Евклида, чем предшествующий, был замечен Саккери. Это одно из трех взаимоисключающих предположений, исчерпывающих возможности для параллельных линий. Вместо эквивалента Саккери, увидеть суть вопроса можно в еще более упрощенном и более достоверном эквиваленте постулата Евклида, а следовательно, и Саккери.
Точка р и прямая линия l, не проходящая через точку р, задают одну плоскость в пространстве. Представим пучок всех (прямых) линий, лежащих на данной плоскости и проходящих через точку р. Существует три варианта: только одна линия из всего пучка не пересечет l, более чем одна линия из пучка пересечет l, ни одна линия не пересечет l.
Первый из этих трех вариантов эквивалентен пятому постулату Евклида. Он также эквивалентен предположению, которое Саккери обязался вывести из другого предположения Евклида. Ему пришлось убедить себя, что второй и третий варианты (и даже их относительные эквиваленты) приводят к противоречию. По очереди из каждого он выводил цепочку рассуждений. Пока он верил своим дедуктивным рассуждениям и придерживался желания поверить в зависимость, он не мог достичь желанного противоречия в неевклидовых эквивалентах. Его строгая логика ничего не выводила, кроме непротиворечивости. Этого не могло быть.
Либо обдуманно, либо по объяснимому недосмотру разочарованный фанат Евклида опроверг одну из своих новых геометрий, добавив дополнительный постулат, пренебрегая его формулировкой: ложно, что прямая линия, достаточно длинная, возвращается в себя саму и становится конечной величиной. Второй вариант он отрицал успешнее, ложным использованием бесконечно малых величин. Игнорируя правила игры, в которую он подвязался играть честно, он сдался, хотя должен был выиграть. Приз был уже у него в руках, когда он отступил. Но поскольку он, безусловно, подсознательно настраивался на победу во имя Евклида еще до начала игры, возможно, он не смог изменить себе. Одна из двух неевклидовых геометрий, которую он выпустил из рук, видимо, сильно искушала его. Он отверг ее с явным сожалением. Ту самую, которую человек по фамилии Лобачевский откроет через девяносто семь лет.
В безмятежной уверенности, что именно он установил неизбежность и вечную истинность геометрии Евклида на все времена, Саккери назвал свой труд «Евклид, очищенный ото всех пятен». Практически со времен Евклида гениальные геометры старались вывести пятый постулат Евклида из его собственных предположений, и все потерпели фиаско. Теперь известно, что поражение было неизбежно: пятый постулат не связан с остальными, как непроизвольно показал Саккери и намеренно – Лобачевский в процессе создания неевклидовых геометрий. Но Саккери умер счастливым в собственном неверии в настоящее величие своего труда.
Если интеллектуальная жизнь Саккери была трагедией, то, по крайней мере, не жалкой. По утверждению отдельных антиклерикальных авторов, жалкая участь постигла шедевры Саккери. Труд этот не потеряли, не предали забвению более чем на полтора века. Его конфисковали и спрятали. Это неприятная инсинуация. И цель дискуссии о нем состоит только в том, чтобы повысить историческую значимость для всех «истин» – от математики до теологии – появления неевклидовой геометрии в XVIII и XIX веках.
Мы видели, что во времена Ренессанса геометрия Евклида вошла в состав вечных ценностей. Кто бы мог оказаться настолько нетерпеливым, чтобы поставить под сомнение абсолютную необходимость этой конкретной геометрии, того неминуемо причислили бы к числу еретиков или, менее почетно, к сумасшедшим. Некоторые абсолюты, потребность в демонстрации которых была необходима для оздоровления разумно здравомыслящих голов, должны были существовать. Евклидова геометрия была избрана всеми скептиками, кто подозревал, что остальные работы чистого разума, в частности официальная теология, должны быть разрушены геометрией. Ни один человек в здравом уме не осмелился бы оспорить истинность геометрии. Таким образом, воцарилась одна абсолютная истина. Но если есть одна, то почему не две? Но если вдруг какой-то еретик опрокинул бы абсолютизм евклидовой геометрии, как поступил Коперник с астрономией Птолемея, ни один абсолют не устоял бы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.