Логика и аргументация - [46]

Шрифт
Интервал

Правило импликации (→) разрешает переходить от строки, где она встречается, к другой, в которой встречаются два списка формул, в одной из них содержится отрицание антецедента, в другой - консеквент импликации:

Действительно, импликация будет истинна, если ложен ее антецедент или истинен консеквент, что и представлено в заключении вывода.

Правило отрицания конъюнкции разрешает в заключении переходить к отрицанию конъюнктивных членов, поскольку отрицание конъюнкции означает отрицание этих членов.

Г, ¬ (А ∧В)

Г, ¬ А, Δ ¬ Г, ¬ В, Δ

Правило отрицания дизъюнкции разрешает в заключении переходить от отрицания дизъюнкции к отрицательным членам дизъюнкции, ибо дизъюнкция является ложной только тогда, когда ложны все члены дизъюнкции:

Г, ¬ ( А ∨ В ), Δ

Г, ¬ А, ¬ В, Δ

Правило отрицания импликации разрешает в заключении переходить от отрицания импликации к утверждению ее антецедента и отрицанию консеквента, так как импликация оказывается ложной только тогда, когда антецедент истинен, а консеквент ложен:

Г, ¬ (А → В), Δ

Г, А, ¬ В, Δ

Двойное отрицание в одной строке может быть заменено утверждением в другой:

Г, ¬ ¬ А, Δ

Г, А, Δ

Квантор существования, который стоит перед формулой А, указывает на наличие объекта, удовлетворяющего

А. Назовем этот объект константой к. Очевидно, что А(к) будет истинно, ибо к удовлетворяет условию А:

Г, (Е х ) А , Δ

Г, А, (к), Δ

Квантор общности, встречающийся перед формулой, свидетельствует о том, что формула (х) А истинна тогда и только тогда, когда каждый индивид из универсума рассуждения удовлетворяет условию А, Тогда истинной оказывается любая формула вида А (т), получающаяся путем замены всех свободных вхождений переменной на любой замкнутый терм:

Г, (х) А, Δ

Г, (х) А, А(т), Δ

Формула с квантором общности (х) А сохраняется для того, чтобы в дальнейшем можно было применить его к другим термам.

Более строгий подход к доказательству формул достигается с помощью аксиоматического построения исчисления предикатов. Для доказательства формул логики, как и для доказательства теорем геометрии, необходимо указать некоторые исходные формулы, которые принимаются в качестве аксиом. В принципе в качестве аксиом могут быть взяты любые тождественно истинные или общезначимые формулы, которые играют роль законов логики. Но обычно при выборе аксиом руководствуются разного рода дополнительными требованиями: простоты получаемой формальной системы, минимального числа аксиом, их интуитивной очевидности и т.п. Чтобы вывести из исходных формул новые формулы, т.е. доказать последние как теоремы логики, необходимо ясно и точно перечислить также правила вывода или доказательства. К их числу относится правило заключения по схеме modus ponens: из двух формул А и А → В следует новая формула В. Кроме того, для получения новых формул используются различные правила подстановки. Например, свободная предметная переменная может быть заменена другой предметной переменной, если эта замена проводится одновременно на всех местах, где встречается свободная переменная. То же самое относится к переменной, обозначающей высказывание.

В качестве аксиом исчисления предикатов берутся, во-первых, аксиомы исчисления высказываний, во-вторых, к ним присоединяют две аксиомы, относящиеся к использованию кванторов общности и существования:

1) x v x → x;

2) х → (х v у);

3) (х v у) → (у v х);

4) (х → у) → [z v х → z v у].

К аксиомам, регулирующим использование кванторов, относятся:

5) (х) А (х) → А (у);

6) В (у) → (Ех) B (х).

Первая из них постулирует: если предикат А выполняется для всех х, то он выполняется также для какого-либо у. Вторая утверждает, что если предикат В, выполняется для какого-либо у, то существует х, для которого выполняется В.

Располагая аксиомами и правилами вывода формул из аксиом, можно доказывать различные формулы исчисления высказываний и предикатов. Таким образом, исчисление высказываний автоматически включается в состав исчисления предикатов. Поэтому вместо обращения к таблицам истинности можно получать общезначимые (или тождественно истинные) формулы с помощью аксиоматического метода. Такой метод используется для строгого построения логических исчислений и для формализации рассуждений.

4.6. Категорический силлогизм и другие умозаключения дедуктивной логики

Термин "силлогизм" заимствован из древнегреческого языка и в переводе на русский означает "выведение следствия" или "счисление", когда речь идет о числах. Впервые этот вид дедуктивных умозаключений детально исследовал основоположник классической логики Аристотель в своем труде "Аналитики". Поэтому силлогистические умозаключения нередко называли аналитическими, которые сам Аристотель противопоставлял диалектическим, к которым он относил правдоподобные рассуждения.

Структура силлогизма характеризует логическую связь между элементами этого вида умозаключения, к которому относятся его посылки и заключение. Посылками силлогизма служат суждения, которые могут быть разными как по качеству (утвердительными и отрицательными), так и количеству (общими и частными). Аристотель определяет посылку как "речь", утверждающую или отрицающую что-то относительно чего-то". Заключение же должно следовать из посылок с логической необходимостью. В связи с этим Аристотель подчеркивает, что "силлогизм есть речь, в которой, если нечто предложено, то с необходимостью вытекает нечто отличное от положенного".


Еще от автора Георгий Иванович Рузавин
Методология научного познания

Учебное пособие посвящено проблемам методологии научного познания, в том числе классификации способов и методов, которые являются специфическими для науки и отличают ее от других способов познания, постижения реального мира. Подробно рассмотрены методы анализа существующего знания и методы научного исследования, представляющие наибольший интерес для будущих исследователей. Для студентов и аспирантов высших учебных заведений, соискателей ученой степени, а также для всех интересующихся философией науки. Рекомендовано Учебно-методическим центром «Профессиональный учебник» в качестве учебного пособия для студентов и аспирантов высших учебных заведений.


Рекомендуем почитать
Архитектура и иконография. «Тело символа» в зеркале классической методологии

Впервые в науке об искусстве предпринимается попытка систематического анализа проблем интерпретации сакрального зодчества. В рамках общей герменевтики архитектуры выделяется иконографический подход и выявляются его основные варианты, представленные именами Й. Зауэра (символика Дома Божия), Э. Маля (архитектура как иероглиф священного), Р. Краутхаймера (собственно – иконография архитектурных архетипов), А. Грабара (архитектура как система семантических полей), Ф.-В. Дайхманна (символизм архитектуры как археологической предметности) и Ст.


Сборник № 3. Теория познания I

Серия «Новые идеи в философии» под редакцией Н.О. Лосского и Э.Л. Радлова впервые вышла в Санкт-Петербурге в издательстве «Образование» ровно сто лет назад – в 1912—1914 гг. За три неполных года свет увидело семнадцать сборников. Среди авторов статей такие известные русские и иностранные ученые как А. Бергсон, Ф. Брентано, В. Вундт, Э. Гартман, У. Джемс, В. Дильтей и др. До настоящего времени сборники являются большой библиографической редкостью и представляют собой огромную познавательную и историческую ценность прежде всего в силу своего содержания.


Свободомыслие и атеизм в древности, средние века и в эпоху Возрождения

Атеизм стал знаменательным явлением социальной жизни. Его высшая форма — марксистский атеизм — огромное достижение социалистической цивилизации. Современные богословы и буржуазные идеологи пытаются представить атеизм случайным явлением, лишенным исторических корней. В предлагаемой книге дана глубокая и аргументированная критика подобных измышлений, показана история свободомыслия и атеизма, их связь с мировой культурой.


Вырождение. Современные французы

Макс Нордау"Вырождение. Современные французы."Имя Макса Нордау (1849—1923) было популярно на Западе и в России в конце прошлого столетия. В главном своем сочинении «Вырождение» он, врач но образованию, ученик Ч. Ломброзо, предпринял оригинальную попытку интерпретации «заката Европы». Нордау возложил ответственность за эпоху декаданса на кумиров своего времени — Ф. Ницше, Л. Толстого, П. Верлена, О. Уайльда, прерафаэлитов и других, давая их творчеству парадоксальную характеристику. И, хотя его концепция подверглась жесткой критике, в каких-то моментах его видение цивилизации оказалось довольно точным.В книгу включены также очерки «Современные французы», где читатель познакомится с галереей литературных портретов, в частности Бальзака, Мишле, Мопассана и других писателей.Эти произведения издаются на русском языке впервые после почти столетнего перерыва.


Несчастное сознание в философии Гегеля

В книге представлено исследование формирования идеи понятия у Гегеля, его способа мышления, а также идеи "несчастного сознания". Философия Гегеля не может быть сведена к нескольким логическим формулам. Или, скорее, эти формулы скрывают нечто такое, что с самого начала не является чисто логическим. Диалектика, прежде чем быть методом, представляет собой опыт, на основе которого Гегель переходит от одной идеи к другой. Негативность — это само движение разума, посредством которого он всегда выходит за пределы того, чем является.


Онтология поэтического слова Артюра Рембо

В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.