Логика и аргументация - [42]

Шрифт
Интервал

Для квантификации (количественной характеристики) высказываний эта теория вводит два основных квантора: квантор общности, который мы будем обозначать символом (х), и квантор существования, обозначаемый символом (Ех). Они ставятся непосредственно перед высказываниями или формулами, к которым относятся. В том случае, когда кванторы имеют более широкую область действия, перед соответствующей формулой ставятся скобки.

Квантор общности показывает, что предикат, обозначенный определенным символом, принадлежит всем объектам данного класса или универсума рассуждения.

Так, суждение: "Все материальные тела обладают массой" можно перевести на символический язык так:

(х) М (х),

где х - обозначает материальное тело:

М - массу;

(х) - квантор общности.

Аналогично этому утверждение о существовании экстрасенсорных явлений можно выразить через квантор существования:

(Ех) Э (х),

где через х обозначены явления:

Э - присущее таким явлениям свойство экстрасенсорности;

(Ex) - квантор существования.

С помощью квантора общности можно выражать эмпирические и теоретические законы, обобщения о связи между явлениями, универсальные гипотезы и другие общие высказывания. Например, закон теплового расширения тел символически можно представить в виде формулы:

(х) (Т(х) → P(х)),

где (х) - квантор общности;

Т(х) - температура тела;

Р(х) - его расширение;

→ знак импликации.

Квантор существования относится только к определенной части объектов из данного универсума рассуждений. Поэтому, например, он используется для символической записи статистических законов, которые утверждают, что свойство или отношение относится только для характеристики определенной части изучаемых объектов.

Введение кванторов дает возможность прежде всего превращать предикаты в определенные высказывания. Предикаты сами по себе не являются ни истинными, ни ложными. Они становятся таковыми, если вместо переменных либо подставляются конкретные высказывания, либо, если они связываются кванторами, квантифицируются. На этом основании вводится разделение переменных на связанные и свободные.

Связанными называются переменные, подпадающие под действие знаков кванторов общности или существования. Например, формулы (х) А (х) и (х) (Р (х) → Q(x)) содержат переменную х. В первой формуле квантор общности стоит непосредственно перед предикатом А(х), вовторой - квантор распространяет свое действие на переменные, входящие в предыдущий и последующий члены импликации. Аналогично этому квантор существования может относиться как к отдельному предикату, так и к их комбинации, образованной с помощью логических операций отрицания, конъюнкции, дизъюнкции и др.

Свободная переменная не подпадает под действие знаков кванторов, поэтому она характеризует предикат или пропозициональную функцию, а не высказывание.

С помощью комбинации кванторов можно выразить на символическом языке логики достаточно сложные предложения естественного языка. При этом высказывания, где речь идет о существовании объектов, удовлетворяющих определенному условию, вводятся с помощью квантора существования. Например, утверждение о существовании радиоактивных элементов записывается с помощью формулы:

(Ex) R(x),

где R обозначает свойство радиоактивности.

Утверждение, что существует опасность для курящего заболеть раком, можно выразить так: (Ех) (К(х) → P(x)), где К обозначает свойство "быть курящим", а Р - "заболеть раком". С известными оговорками то же самое можно было выразить» посредством квантора общности: (х) (К(х) → Р(х)). Но утверждение, что всякий курящий может заболеть раком, было бы некорректным, и поэтому его лучше всего записать с помощью квантора существования, а не общности.

Квантор общности используется для высказываний, в которых утверждается, что определенному предикату А удовлетворяет любой объект из области его значений. В науке, как уже говорилось, квантор общности используется для выражения утверждений универсального характера, которые словесно представляются с помощью таких фраз, как "для всякого", "каждый", "всякий", "любой" и т.п. Путем отрицания квантора общности можно выразить общеотрицательные высказывания, которые в естественном языке вводятся словами "никакой", "ни один", "никто" и т.п.

Разумеется, при переводе на символический язык утверждений естественного языка встречаются определенные трудности, но при этом достигается необходимая точность и однозначность выражения мысли. Нельзя, однако, думать, что формальный язык богаче естественного языка, на котором выражаются не просто смысл, но и разные его оттенки. Речь поэтому может идти только о более точном представлении выражений естественного языка как универсального средства выражения мыслей и обмена ими в процессе общения.

Чаще всего кванторы общности и существования встречаются вместе. Например, чтобы выразить символически утверждение: "Для каждого действительного числа х существует такое число у, что х будет меньше у", обозначим предикат "быть меньше" символом <, известным из математики, и тогда утверждение можно представить формулой: (х) (Еу) < (х, у). Или в более привычной форме: (х) (Еу) (х < у). Это утверждение является истинным высказыванием, поскольку для любого действительного числа х всегда существует другое действительное число, которое будет больше него. Но если мы переставим в нем кванторы, т.е. запишем его в форме: (Еу) (х) (х < у), тогда высказывание станет ложным, ибо в переводе на обычный язык оно означает, что существует число у, которое будет больше любого действительного числа, т.е. существует наибольшее действительное число.


Еще от автора Георгий Иванович Рузавин
Методология научного познания

Учебное пособие посвящено проблемам методологии научного познания, в том числе классификации способов и методов, которые являются специфическими для науки и отличают ее от других способов познания, постижения реального мира. Подробно рассмотрены методы анализа существующего знания и методы научного исследования, представляющие наибольший интерес для будущих исследователей. Для студентов и аспирантов высших учебных заведений, соискателей ученой степени, а также для всех интересующихся философией науки. Рекомендовано Учебно-методическим центром «Профессиональный учебник» в качестве учебного пособия для студентов и аспирантов высших учебных заведений.


Рекомендуем почитать
Архитектура и иконография. «Тело символа» в зеркале классической методологии

Впервые в науке об искусстве предпринимается попытка систематического анализа проблем интерпретации сакрального зодчества. В рамках общей герменевтики архитектуры выделяется иконографический подход и выявляются его основные варианты, представленные именами Й. Зауэра (символика Дома Божия), Э. Маля (архитектура как иероглиф священного), Р. Краутхаймера (собственно – иконография архитектурных архетипов), А. Грабара (архитектура как система семантических полей), Ф.-В. Дайхманна (символизм архитектуры как археологической предметности) и Ст.


Сборник № 3. Теория познания I

Серия «Новые идеи в философии» под редакцией Н.О. Лосского и Э.Л. Радлова впервые вышла в Санкт-Петербурге в издательстве «Образование» ровно сто лет назад – в 1912—1914 гг. За три неполных года свет увидело семнадцать сборников. Среди авторов статей такие известные русские и иностранные ученые как А. Бергсон, Ф. Брентано, В. Вундт, Э. Гартман, У. Джемс, В. Дильтей и др. До настоящего времени сборники являются большой библиографической редкостью и представляют собой огромную познавательную и историческую ценность прежде всего в силу своего содержания.


Свободомыслие и атеизм в древности, средние века и в эпоху Возрождения

Атеизм стал знаменательным явлением социальной жизни. Его высшая форма — марксистский атеизм — огромное достижение социалистической цивилизации. Современные богословы и буржуазные идеологи пытаются представить атеизм случайным явлением, лишенным исторических корней. В предлагаемой книге дана глубокая и аргументированная критика подобных измышлений, показана история свободомыслия и атеизма, их связь с мировой культурой.


Вырождение. Современные французы

Макс Нордау"Вырождение. Современные французы."Имя Макса Нордау (1849—1923) было популярно на Западе и в России в конце прошлого столетия. В главном своем сочинении «Вырождение» он, врач но образованию, ученик Ч. Ломброзо, предпринял оригинальную попытку интерпретации «заката Европы». Нордау возложил ответственность за эпоху декаданса на кумиров своего времени — Ф. Ницше, Л. Толстого, П. Верлена, О. Уайльда, прерафаэлитов и других, давая их творчеству парадоксальную характеристику. И, хотя его концепция подверглась жесткой критике, в каких-то моментах его видение цивилизации оказалось довольно точным.В книгу включены также очерки «Современные французы», где читатель познакомится с галереей литературных портретов, в частности Бальзака, Мишле, Мопассана и других писателей.Эти произведения издаются на русском языке впервые после почти столетнего перерыва.


Несчастное сознание в философии Гегеля

В книге представлено исследование формирования идеи понятия у Гегеля, его способа мышления, а также идеи "несчастного сознания". Философия Гегеля не может быть сведена к нескольким логическим формулам. Или, скорее, эти формулы скрывают нечто такое, что с самого начала не является чисто логическим. Диалектика, прежде чем быть методом, представляет собой опыт, на основе которого Гегель переходит от одной идеи к другой. Негативность — это само движение разума, посредством которого он всегда выходит за пределы того, чем является.


Онтология поэтического слова Артюра Рембо

В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.