Логика для всех. От пиратов до мудрецов - [10]

Шрифт
Интервал

Таким образом, высказывание «А или Б»:

• истинно, если истинно хотя бы одно из составляющих его простых высказывания;

• ложно, если ложны оба составляющих его простых высказывания.

Составим для высказывания «А или Б» таблицу истинности:



Замечание 2. На самом деле значение союза «или» не всегда одинаково. Например, высказывание «Каждый сотрудник отеля владеет английским или русским языком» вполне допускает, что кто-то из сотрудников владеет обоими языками, что согласуется с таблицей истинности союза «или». А высказывание «Анкета заполняется на английском или русском языке» предполагает использование одного из двух языков, но не обоих сразу. Чтобы не путаться, при перечислении исключающих друг друга случаев договоримся вместо союза «или» использовать его синоним «либо… либо». Таблица истинности для высказывания «либо А, либо Б» выглядит так:



Задача 4.3. Какие из следующих шести высказываний истинны, а какие ложны?

1) Береза – это куст или дерево. Береза – это либо куст, либо дерево.

2) Собака – животное или камбала – рыба. Либо собака – животное, либо камбала – рыба.

3) Собака – это птица или рыба. Собака – это либо птица, либо рыба.

Решение: 1) Из двух простых высказываний «Береза – это куст» и «Береза – это дерево» первое истинно, а второе ложно. Поэтому высказывания и с союзом «или», и с союзом «либо… либо» в целом истинны, что соответствует второй строке таблицы истинности.

2) Оба простых высказывания истинны, поэтому истинно и высказывание с союзом «или». А с союзом «либо… либо» ложно: именно первыми строками и различаются их таблицы истинности.

3) Оба простых высказывания ложны, поэтому ложны и оба составных высказывания.

Задача 4.4. 1) В сказке Ганса Христиана Андерсена «Новое платье короля» обманщики пообещали, что «платье… обладает чудесным свойством становиться невидимым для всякого человека, который не на своем месте сидит или непроходимо глуп». Изобразите с помощью кругов Эйлера тех, для кого платье должно стать невидимым.

2) Вот отрывок из «Песни ткачей» Владимира Васильева:

Мы не напрасно взялись ткать,
Чтоб мог народ, в конце концов,
О короле сказать:
«Либо он дурак – либо не на месте,
Либо не на месте – либо он дурак,
Либо он дурак – либо не на месте,
Либо не на месте и дурак!»

Представим, что три представителя народа высказались о короле. Первый: «Либо он дурак – либо не на месте»; второй: «Либо не на месте – либо он дурак»; третий: «Либо он дурак, либо не на месте, либо не на месте и дурак». Одинаков ли смысл трех высказываний? Какое из них наиболее точно соответствует сказке?

Ответ. 1) Область выделена на рисунке 6 серым.


Рис. 6


2) Первые двое сказали одно и то же. А третье высказывание равносильно такому: «Он дурак или не на месте». Именно оно соответствует тексту Андерсена.


А что же пираты? Клад пока не найден. Но уже ясно, как определять истинность высказываний «А и Б» и «А или Б». Можно ли научиться с помощью флибустьеров еще чему-нибудь полезному? О да! Например, строить к таким высказываниям отрицания. Собственно говоря, отрицание к высказыванию Арчи уже построено. Сравним получившиеся противоположные высказывания:

(1) Клад находится в 30 футах к востоку и в 120 футах к северу от пальмы.

(2) Клад находится от пальмы не в 30 футах к востоку или не в 120 футах к северу.

Все просто: каждое простое высказывание заменено противоположным, а связка «и» заменена на «или».

Вообще, отрицанием к высказыванию «А и Б» служит высказывание «не А или не Б».

Отрицанием к высказыванию «А или Б» служит высказывание «не А и не Б».

Последние два предложения называются законами де Моргана. Но названы они так вовсе не в честь самого знаменитого пирата Карибского моря Генри Моргана, а в честь жившего на два века позже шотландского математика Огастеса де Моргана.

Задача 4.5. Постройте отрицания к высказываниям Бена, Вилли и Глена. Какие из этих отрицаний истинны?

Решение. Сразу можно сказать, что отрицания к ложным высказываниям Бена и Вилли сами будут истинными высказываниями, а отрицание к истинному высказыванию Глена будет ложным. Вот эти отрицания:

Бен: Клад находится от пальмы не в 100 футах к востоку или не в 120 футах к северу.

Вилли: Клад находится от пальмы не в 30 футах к востоку или не в 100 футах к северу.

Глен: Клад находится от пальмы не в 100 футах к востоку или не в 100 футах к северу.

Задача 4.6. Замените высказывания на противоположные:

1) Но с ветром худо и в трюме течи.

2) Ни Бог, ни дьявол не помогут ему спасти свои суда.

3) Случился штиль иль просто ветер встречный.

4) Вода и ветер сегодня злы, и зол, как черт, капитан.

Ответ. 1) С ветром все в порядке или трюм не течет.

2) Бог или дьявол помогут ему спасти его суда.

3) Не случилось ни штиля, ни встречного ветра.

4) Хотя бы один из трех: вода, ветер, капитан – сегодня добр.

Вот, пожалуй, и все, чему стоило поучиться у пиратов. Больше возвращаться на остров незачем: Глен вот-вот найдет клад, а на то, что произойдет после этого, детям до 18 лет смотреть не стоит. Как, впрочем, и взрослым. Вместо клада нас ждут…


Задачи для самостоятельного решения

Задача 4.7. В ансамбль приглашают всех, кто хорошо поет или танцует. Наташа хорошо и поет, и танцует. Пригласят ли ее в ансамбль?


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.