Логика для всех. От пиратов до мудрецов - [11]
Задача 4.8. Каждый из четырех гномов: Беня, Сеня, Веня и Женя – либо всегда говорит правду, либо всегда врет. Мы услышали такой разговор:
Беня – Вене: «Ты врун».
Женя – Бене: «Сам ты врун!»
Сеня – Жене: «Да оба они вруны!» Подумав, он добавил: «Впрочем, ты тоже».
Кто из гномов говорит правду?
Задача 4.9. Математик с тремя детьми пришел в пиццерию.
– Хочу, чтобы в пицце были помидоры или грибы, – потребовала Аня.
– Пиццу с помидорами и грибами я есть не буду, – заявил Боря.
– Если будут помидоры, а грибов не будет, то я не буду есть, – добавил Ваня.
– Отлично! – воскликнул математик. – Сделайте нам, пожалуйста, пиццу с…
Так какую же пиццу заказал математик, чтобы все дети ее ели?
Задача 4.10. Андрей является участником шоу-викторины. Главный приз спрятан в одном из ящиков. Андрей получает 4 подсказки:
1. Приз находится в синем или зеленом ящике.
2. Приз находится в красном или желтом ящике.
3. Приз находится в зеленом ящике.
4. В желтом ящике приза нет.
Три подсказки ошибочны и только одна правильная. Андрей поразмыслил и открыл правильный ящик. Ящик какого цвета он выбрал?
Задача 4.11. В доме 300 квартир. В квартиры, номера которых кратны 4 или 6, Дед Мороз принес шоколадку. А в квартиры, номера которых кратны 4 и 6, – айфон. Чего Дед Мороз принес в дом больше – айфонов или шоколадок? Во сколько раз?
Задача 4.12. Зайчишка-хвастунишка залез на пенек и громко закричал: «Во всем лесу нет никого меня смелее, нет никого меня умнее!». Он, конечно же, соврал. Какой из пяти выводов можно сделать?
(A) Все в лесу умнее и смелее его.
(Б) В лесу есть кто-то и умнее его, и смелее.
(B) В лесу есть кто-то его умнее.
(Г) В лесу есть кто-то его смелее.
(Д) В лесу есть кто-то умнее или смелее его.
Задача 4.13. Король подвел узника к двум дверям, ведущим в две комнаты. В каждой из них может находиться принцесса или тигр. При этом не исключено, что в обеих комнатах находятся принцессы или в обеих – тигры. Узник должен войти в одну из комнат. Если там окажется принцесса, то узник женится на ней. Если тигр – то он растерзает узника. На дверях висят таблички с надписями:
Король любезно сообщил, что на одной из табличек написана правда, а на другой – нет. Какую комнату вы посоветуете выбрать?
Задача 4.14. Другого узника ожидало похожее испытание. Но на этот раз король сказал, что утверждения на обеих табличках одновременно либо истинны, либо ложны. А написано было вот что:
В какую дверь следует идти узнику?
Задача 4.15. Для третьего узника король повесил на обе двери одинаковые таблички:
А сказал так: «Если в левой комнате находится принцесса, то утверждение на табличке истинно, если же тигр, то ложно. В правой же комнате все наоборот: утверждение ложно, если там находится принцесса и истинно, если тигр». Куда лучше идти узнику?
Задача 4.16. Один из пяти братьев испек маме пирог.
Никита сказал: «Это Глеб или Игорь».
Глеб сказал: «Это сделал не я и не Дима».
Игорь сказал: «Вы оба шутите».
Антон сказал: «Нет, один из них сказал правду, а другой обманул».
Дима сказал: «Нет, Антон, ты не прав».
Мама знает, что трое из ее сыновей всегда говорят правду. Кто испек пирог?
Задача 4.17. Четверо детей сказали друг о друге так:
Маша: «Саша, Наташа и Гриша умеют сидеть на стуле».
Саша: «Маша, Наташа и Гриша не умеют сидеть на стуле».
Наташа: «Маша и Саша солгали».
Гриша: «Маша, Саша и Наташа сказали правду».
Сколько детей на самом деле сказали правду?
Задача 4.18. «Хоп!» – это игра на внимательность. Игроки по очереди называют натуральные числа в порядке возрастания. Если число кратно 3 или содержит в записи цифру 3, то вместо него надо сказать «Хоп!». Если не ошибаться, получится ряд: 1, 2, хоп, 4, 5, хоп, 7, 8, хоп, 11, хоп, хоп, 14 и т. д. Кто по ошибке назовет запрещенное число, выходит из круга. Побеждает последний оставшийся игрок.
Пять ребят играли в «Хоп!». Известно, что числа 1 и 23 назвал Петя, 2 и 20 – Вася, а 5 и 15 – Таня. Сколько раз победитель сказал «Хоп!»?
Занятие 5
Можно ли дышать на Луне, или Следствие и обратные высказывания
Единожды солгавши, кто тебе поверит?
Козьма Прутков
На этом занятии ребята знакомятся с понятием следствия. Они должны осознать два факта:
• Высказывания А ⇒ Б и Б ⇒ А имеют разный смысл и могут быть истинными или ложными независимо друг от друга (а называются они обратными).
• Высказывание А ⇒ Б ничего не утверждает в случае ложности А.
Первый факт воспринимается гораздо легче второго, так как хорошо согласуется со здравым смыслом и повседневной речью. Одним кружковцам различие взаимно обратных высказываний понятно интуитивно, для других прояснится с помощью таблицы истинности, для третьих – с помощью кругов Эйлера. Мы рекомендуем продемонстрировать все способы рассуждения, посмотреть, какой из них наиболее понятен большинству, и в дальнейшем отдавать ему предпочтение. А при самостоятельном решении задач предоставлять рассказчику право опираться на какие угодно верные соображения и ни в коем случае не считать умение применять таблицы истинности или круги Эйлера самоцелью на этом занятии. Более того, если учитель считает один из подходов неуместным для своих учеников, можно его спокойно игнорировать и обходиться другими. Если же занятие проводится в полном объеме, рекомендуем не стирать с доски ни таблицы истинности, ни изображения их с помощью кругов Эйлера, и обращаться к одним и тем же иллюстрациям при решении разных задач. В частности, после рассказа кем-то из ребят решения задачи 5.4 предложить желающим «объяснить по-другому».
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.