Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - [40]

Шрифт
Интервал

Для молекулы HCN заселенность 1s-орбитали водорода равна 0,855 и, следовательно, заселенность гибридной АО углерода h>2C равна 1,145. Так как сумма заселенностей всех σ-орбиталей углерода составляет 4,099, заселенность его h>3С-ГАО равна 0,954. Определяя теперь порядки связей (недиагональные элементы матрицы Р) как среднегеометрические значения соответствующих заселенностей (диагональных элементов матрицы

), получаем

Вычисления свидетельствуют, что при учете полярности локализованных МО матрица Р>h остается практически неизменной. Коэффициенты гибридизации также почти не меняются. В то же время максимум ω повышается до 9,98 (w ≈ 10), а минимум θ понижается до 0,25. Таким образом, учет полярности локализованных МО заметно улучшает аппроксимацию "точной" матрицы плотности Р>h эталонной матрицей

, хотя и является несущественным для определения характера гибридизации АО.

Метод эталонной матрицы плотности допускает обобщение на системы с многоцентровыми связями [22]. Типичным примером химического соединения ОМ, которого нельзя локализовать исключительно в одноцентровые и двухцентровые МО, является молекула диборана В>2Н>6 (рис. 19). Два из шести атомов водорода в этой молекуле имеют по два равноотстоящих соседних атома (B>1 и В>2). Каждый из атомов бора, в свою очередь, связан с четырьмя атомами водорода. Следует учитывать также возможность непосредственного химического взаимодействия атомов бора друг с другом.

Рис. 19. Молекула диборана


"Внешние" связи ВН в диборане, очевидно, реализуются двухцентровыми МО, образуемыми 1s-орбиталями водорода и гибридными АО бора. Еще не зная конкретного вида этих ГАО (h), можно определить их заселенности

по известным заселенностям
=n>1sH. Предположим далее, что две другие валентные МО локализуются на трехцентровых связях B>1H>1'B>2 и B>1H>2'B>2 и что каждая из них образована 1sH'>i орбиталью водорода и гибридными АО бора h>i1' и h>i2' причем


Таким образом определяются диагональные элементы эталонной матрицы плотности (

). Недиагональные элементы
>ab, как было показано в работе [22], могут быть вычислены как геометрические средние значения диагональных элементов независимо от того, каким связям (двухцентровым или трехцентровым) они соответствуют.

Росле того как построена матрица

, максимизацией ω(4.57) вычисляются оптимальные ГАО бора В>1:

и ГАО атома В>2, отличающиеся от указанных лишь знаком коэффициента при 2p>z-орбитали.

Гибридные АО бора h>1 и h>2, ориентированные к периферийным атомам водорода H>1 и Н>2, образуют угол 120°; угол h'>j-орбиталями, ориентированными к мостиковым атомам водорода H'>j, существенно меньше и составляет 102° (ср. с углами на рис.19).

Интересный елучай представляет молекула циклопропана, особенностью которой, отличающей ее от молекул большинства других органических соединений, является аномально-малый угол между связями С-С. Три атома углерода в циклопропане образуют правильный треугольник с углами в 60°, что существенно меньше обычных значений 109,5° для насыщенных и 120° для сопряженных ненасыщенных соединений (рис. 20).

Рис. 20. Молекула циклопропана

Для описания структуры химической связи в циклопропане были предложены две модели. Согласно модели Коулсона и Моффита [36], в циклопропане реализуются три локализованные двухцентровые двухэлектронные связи углерод-углерод. Образующие эти связи гибридные АО ориентированы навстречу друг другу, но не строго по линии С-С, а под некоторым углом к ней (рис. 21). Из условия ортогональности вещественных гибридных АО следует, что этот угол не может быть меньше 15°. Особые химические свойства циклопропана, близкие к свойствам алкенов (хотя он относится к насыщенным углеводородам), объясняются в рамках модели Коулсона и Моффита тем, что "банановые" МО циклопропана подобны эквивалентным банановым МО, которые получают — π-типа в алкенах.

Рис. 21. Модель Коулсона и Моффита для молекулы циклопропана

Согласно модели Уолша [84], в циклопропане реализуются две трехцентровые межуглеродные связи, одна — двухэлектронная, а другая — четырехэлектронная (рис. 22). Двухэлектронной связи соответствует полносимметричная трехцентровая МО, четырехэлектронной — две вырожденные МО, образованные "чистыми" 2р-орбиталями углерода и преобразующиеся по двумерному неприводимому представлению группы симметрии молекулы D>3h).

Рис. 22. Модель Уолша для молекулы циклопропана

Метод эталонной матрицы плотности позволяет сравнить качество альтернативных моделей и вычислить отвечающие им коэффициенты гибридизации АО углерода. Вычисленный s-xaрактер ГАО, реализующих двухцентровые углерод-углеродные связи в модели Коулсона и Моффита, χ>s = 18%, и вычисленное значение угла между этими ГАО (принадлежащими общему атому углерода) равно 102°, что означает их отклонение на 21° от линии, связывающей атомные ядра. Гибридные АО, реализующие трехцентровые двухэлектронные связи в модели Уолша, определяются значением χ>s = 35% и ориентацией к центру молекулы циклопропана. Наконец, гибридные АО, реализующие углерод-водородные связи, как свидетельствуют вычисления, почти не зависят от выбора модели и ориентированы вдоль линии С-Н.


Еще от автора Игорь Сергеевич Дмитриев
Упрямый Галилей

В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника.


Путешественники во времени. Историко-фантастическая эпопея. Книга 4. Олег и Марина в 7011 году

Олег с Игорем едут за город поиграть в страйкбол. Неожиданно встречают Марину, которая приехала с подругой Таней покататься на велосипедах. Между Мариной и Олегом вновь вспыхивает охладевшая было любовь, а Игорь в восторге от Тани. Прощаясь, Игорь назначает девушке свидание в парке, а в следующие выходные обе пары опять встречаются на старом месте. Из-за пустяка Игорь ссорится с Таней, но сам же от этого сильно страдает. Помирившись, вчетвером опять едут на велосипедах на то же брошенное предприятие. Но ребят заметил охранник, и они прячутся в каком-то «батискафе», который оказался машиной времени.


Остров концентрированного счастья. Судьба Фрэнсиса Бэкона

Несмотря на то, что философские идеи Фрэнсиса Бэкона хорошо изучены и описаны, его жизненному пути в литературе уделяется мало внимания. Монография И. С. Дмитриева, первая на русском языке биография Ф. Бэкона, написана на основе архивных материалов и широкого круга первоисточников. Жизнь героя книги представлена в контексте сложной, наполненной драматическими событиями эпохи в истории Англии второй половины XVI – начала XVII столетий. Один из самых одаренных людей своего времени, Фрэнсис Бэкон отдавал много сил и времени не только философии, но и активной политической деятельности.


Путешественники во времени. Книга 1. Сергей и Александра

Историческая эпопея включает в себя 5 книг. Герой первой – молодой физик Сергей – работает в институте над созданием машины времени. Поспорив с друзьями, что возьмет интервью у "секретного" физика, в институт приходит студентка-журналист Александра. Она блестяще справилась со своей задачей, но влюбилась в физика. Сергей чувствует, что полюбил девушку-студентку, но кто она и как ее найти – не знает. Саша, чтобы попасть к "своему физику", просит подругу, папа которой руководитель в этом институте, помочь устроиться на практику.


Рекомендуем почитать
Російсько-український словник термінів фізики і химії

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Карнавал молекул. Химия необычная и забавная

Книга в форме занимательных бесед предлагает интересные примеры и истории, которые позволят родителям привлечь внимание школьников к изучению естественных наук, преподавателям средней школы – сделать занятия более увлекательными, а также познакомит студентов и аспирантов, выбравших химию своей специальностью, с тем, как ход рассуждений исследователя позволяет получать интересные результаты. В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов.


Общая и Неорганическая химия с примерами решения задач

Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания.


Язык химии. Этимология химических названий

Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.


Химия завтра

Химия завтра… О какой химии пойдет речь?О той, которая разгадывает тайны атомно-молекулярных построек, создает новые соединения, помогает одевать, обувать людей, строить города, машины.О той, которая разгадывает тайны белковых молекул, составляющих основу живого, и помогает сохранять здоровье человека, продлевать его жизнь, умножать плодородие земли, создавать изобилие продуктов.Будущее химии кажется сейчас совершеннейшей фантастикой. Материалы по заказу… Синтетический белок… Искусственная пища… Замена вышедших из строя органов человеческого тела… И многое, многое другое.Об этих «чудесах», становящихся реальностью на наших глазах, или таких, которые суждено будет увидеть только нашим потомкам, вы и прочтете в этой книге.


Металлы, которые всегда с тобой

Металлы, находящиеся в незначительных количествах внутри живого организма, называют микроэлементами. Это не случайные примеси, а важнейшие составляющие биологически активных веществ: они обеспечивают нормальный ход биохимических процессов, стимулируют обмен веществ, активно участвуют в кроветворении, влияют на рост, размножение и наследственность организмов. Вот почему их еще называют металлами жизни. Эта книга о десяти важнейших биометаллах, о трудном пути познания роли для всего живого...