Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - [3]

Шрифт
Интервал

В литературе, посвященной истории структурной химии, можно встретить мнение о том, что доквантовые электронные теории "представляли собой попытку интерпретировать простую межатомную связь как жесткий элемент структуры, обусловленный целочисленностью валентных электронов и, по существу, исключивший вариации в энергиях связей" [16, с. 94].

Однако анализ работы Льюиса показывает, что это не совсем так. Обратимся, например, к пятому постулату: "Электроны могут с легкостью переходить из одного положения в наружной оболочке к другому, они удерживаются в своем положении более или менее напряженными (constraints) связями, и эти положения, а также прочность связей определяются природой данного атома и тех атомов, которые соединены с ним" [59, с. 768]. Эта мысль конкретизируется в другом месте статьи Льюиса, где он рассматривает гомоатомные молекулы галогенов: "электроны, которые осуществляют связь между двумя атомами йода, удерживаются более слабыми силами, чем в случае брома и т. д., во всей группе [59, с. 784]. Кроме того, для гетероатомных полярных молекул взаимное влияние атомов обусловлено по Льюису различным по величине притяжением электронной пары, осуществляющей химическую связь, к разным атомам, что выражается в различной полярности соединений. Рассматривая молекулу Н>2СlС-СООН, Льюис говорит о постепенном ослаблении "разделения электронов между атомами при удалении от атома хлора" [59, с. 782]. С помощью идей Льюиса многие американские и английские химики разработали в 20-х годах электронные модели взаимного влияния атомов. Так, например, в 1923 г. ученики Льюиса Латимер и Родебуш исследовали способность электроотрицательного атома изменять свойства соседних функциональных групп.

Как сказано в работе [16], рациональный химический динамизм связан не с механическим взглядом на атомы и молекулы, а с появлением представлений о неравноценности сил и энергий химической связи и вообще химического взаимодействия, в том числе взаимного влияния атомов [16, с. 93]. Поэтому нужно отметить, что теория Льюиса вовсе не исключает указанные идеи, и когда мы говорили о ней как о статической теории, это не следует понимать буквально — она статична по сравнению с теорией Н. Бора, но не в смысле "рационального химического динамизма".

С квантовохимической точки зрения понятно, почему гипотеза о статическом атоме (при отсутствии в нем орбитального движения электронов) в совокупности с предположением о взаимной проницаемости атомных оболочек (четвертый постулат) дала возможность качественно рассмотреть ковалентную связь. Действительно, согласно теореме Гельмана-Фейнмана, распределение электронной плотности в молекуле, определяемое одночастичной матрицей плотности ρ, таково, что силы, действующие на ядра, могут быть рассчитаны по законам классической электростатики суммированием вкладов от каждого элемента статического объемного заряда, "размазанного" в пространстве с плотностью ρ. Это обусловило впоследствии успех многих квантовохимических методов, особенно тех из них, в которых развивается квазиклассический подход к определению типа ядерного полиэдра молекулы, например модель Сиджвика и Пауэлла, развитая затем Гиллеспи и Найхолмом (подробнее см. [9]).

В 20-х годах была дана качественная трактовка реакций присоединения к насыщенным молекулам, структуры ряда комплексных соединений, а также в первом приближении объяснена природа водородной связи. Это удалось сделать с помощью выдвинутой Льюисом и развитой впоследствии Сиджвиком [78, 79] концепции неподеленной (свободной) электронной пары, способной образовывать химические связи.

Значение появления этой концепции трудно переоценить. Если в конце XIX — начале XX вв. для объяснения существования многих комплексных соединений и протекания реакций присоединения к насыщенным молекулам приходилось прибегать к искусственным представлениям о "дополнительных" (скрытых, побочных) валентностях, то с появлением модели Льюиса и концепции неподеленных электронных пар необходимость в подобных построениях отпала. По словам Сиджвика: "обе ветви химии — органическая и неорганическая — получили благодаря введению электронных представлений единый теоретический фундамент" [79, с. 468].

Развитие теории ковалентной связи Ленгмюром

Большая заслуга в разработке и пропаганде идей Льюиса принадлежит американскому физикохимику Ирвингу Ленгмюру. По образному замечанию американского историка химии М. Зальцмана: "если бы не Ленгмюр, то ключ к химической связи оказался бы надолго зарытым в химической литературе" [77].

Основные идеи своей работы [57] Ленгмюр выразил в одиннадцати постулатах, большая часть которых относится к строению электронной оболочки. Модель Ленгмюра, так же как и модель Льюиса, — электростатическая. Оба автора пытаются связать ее с ранней моделью Томсона. Но у теории Ленгмюра имеются некоторые преимущества, главное из которых — принцип заполнения электронных оболочек, которые Ленгмюр разбивает на "ячейки" (cells). В каждой ячейке может находиться не более двух электронов[2]. Следует заметить, что этот принцип заполнения электронных оболочек был распространен Ленгмюром на все известные тогда химические элементы. Но главное, что интересно в данной книге,- это его взгляд на природу химической связи. Ленгмюр выделяет два типа стабильных электронных конфигураций: электронную пару и октет. При образовании химической связи все валентные электроны участвуют в образовании октетов, либо переходя от одного атома к другому, либо путем образования общих электронных пар. Общее число электронов е, число октетов п и число электронных пар


Еще от автора Игорь Сергеевич Дмитриев
Упрямый Галилей

В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника.


Путешественники во времени. Историко-фантастическая эпопея. Книга 4. Олег и Марина в 7011 году

Олег с Игорем едут за город поиграть в страйкбол. Неожиданно встречают Марину, которая приехала с подругой Таней покататься на велосипедах. Между Мариной и Олегом вновь вспыхивает охладевшая было любовь, а Игорь в восторге от Тани. Прощаясь, Игорь назначает девушке свидание в парке, а в следующие выходные обе пары опять встречаются на старом месте. Из-за пустяка Игорь ссорится с Таней, но сам же от этого сильно страдает. Помирившись, вчетвером опять едут на велосипедах на то же брошенное предприятие. Но ребят заметил охранник, и они прячутся в каком-то «батискафе», который оказался машиной времени.


Путешественники во времени. Книга 1. Сергей и Александра

Историческая эпопея включает в себя 5 книг. Герой первой – молодой физик Сергей – работает в институте над созданием машины времени. Поспорив с друзьями, что возьмет интервью у "секретного" физика, в институт приходит студентка-журналист Александра. Она блестяще справилась со своей задачей, но влюбилась в физика. Сергей чувствует, что полюбил девушку-студентку, но кто она и как ее найти – не знает. Саша, чтобы попасть к "своему физику", просит подругу, папа которой руководитель в этом институте, помочь устроиться на практику.


Остров концентрированного счастья. Судьба Фрэнсиса Бэкона

Несмотря на то, что философские идеи Фрэнсиса Бэкона хорошо изучены и описаны, его жизненному пути в литературе уделяется мало внимания. Монография И. С. Дмитриева, первая на русском языке биография Ф. Бэкона, написана на основе архивных материалов и широкого круга первоисточников. Жизнь героя книги представлена в контексте сложной, наполненной драматическими событиями эпохи в истории Англии второй половины XVI – начала XVII столетий. Один из самых одаренных людей своего времени, Фрэнсис Бэкон отдавал много сил и времени не только философии, но и активной политической деятельности.


Рекомендуем почитать
Энергия жизни. От искры до фотосинтеза

В этой книге Азимов рассказывает о том, как люди научились использовать энергию — сумели заставить работать на себя огонь, воду, ветер, пар, электричество и солнце. Большое внимание уделено изобретениям, открывшим новые источники энергии, распахнувшие перед человечеством двери новой эпохи. Автор также увлекательно повествует о том, как вырабатывается энергия в живых организмах, какие процессы происходят на уровне молекул в органической и неорганической материи.


Пособие кислотчику сульфитно-целлюлозного производства

Данное пособие создано для специалистов совершенствующих свое мастерство на целлюлозно-бумажных комбинатах.Если Вам понравилось и помогло это пособие, и хотите получить другие в fb-2 — обращайтесь: [email protected].


Металлы, которые всегда с тобой

Металлы, находящиеся в незначительных количествах внутри живого организма, называют микроэлементами. Это не случайные примеси, а важнейшие составляющие биологически активных веществ: они обеспечивают нормальный ход биохимических процессов, стимулируют обмен веществ, активно участвуют в кроветворении, влияют на рост, размножение и наследственность организмов. Вот почему их еще называют металлами жизни. Эта книга о десяти важнейших биометаллах, о трудном пути познания роли для всего живого...


Золото, пуля, спасительный яд. 250 лет нанотехнологий

Генрих Эрлих – не только доктор химических наук, профессор Московского государственного университета и серьезный ученый, но и прекрасный научный популяризатор, умеющий увлекательно, просто, без единой формулы рассказать об очень сложных вещах. Говоря о нанотехнологиях, он разрушает множество мифов, например о том, что эти чудесные технологии по явились только сегодня. На самом деле, они существуют уже по крайне мере 250 лет, и за эти годы произошло много интересного – и в науках, и в технологиях. Обо всем этом, а еще и о судьбах удивительных людей, без которых наш мир сегодня был бы совсем другим, – эта книга.


Пуговицы Наполеона: Семнадцать молекул, которые изменили мир

Сенсационное разоблачение! Пенни Лекутер, преподаватель химии из Канады, и практикующий американский химик Джей Берресон показывают изнанку всемирной истории. Не боги, не цари, не герои, не массы и даже не большие идеи — миром правит химия. Невидимые глазу молекулы приводят в движение народы, армии и флоты, рождают и обращают в прах города и целые цивилизации, двигают горы и толкают людей на великие подвиги, чудовищные преступления и грандиозные авантюры…Авторы рисуют портреты семнадцати молекул, оказавших и оказывающих самое значительное влияние на нас и нашу планету.


Химия в бою

В книге говорится о химическом оружии армий империалистических государств и средствах защиты от него Читатель узнает о роли химии в создании и развитии ракетно-ядерного оружия, самолетостроения, кораблестроения Отдельные главы расскажут о том, как химия содействует развитию ствольной артиллерии и танков, о пластмассовой броне как для боевых машин и кораблей, так и для индивидуальной защиты. Книга написана по материалам, опубликованным в иностранной и советской печати, и рассчитана на военных и гражданских читателей.Редактор-составитель инженер-подполковник Жуков В.Н.