Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - [29]

Шрифт
Интервал

-МО. Устанавливая соответствие между МО и АО объединенного атома, Хунд определил, что первая из названных выше МО является sσ (или dσ)-орбиталью, вторая- рσ-орбиталью, третья — pσ — и последняя dπ-орбиталями. При этом состояние 3sσ по энергии должно лежать ниже, чем 4рσ, а 2рπ ниже, чем 3dπ. По мнению Хунда, наиболее вероятной является следующая последовательность одноэлектронных состояний в порядке возрастания их энергии:

Таким образом, в 1927-1929 гг. Хундом были в качественном виде сформулированы некоторые важные идеи (одноэлектронного приближения, соответствия между атомными и молекулярными состояниями и т. п.), получившие затем более глубокую разработку. Однако его рассуждения о природе химической связи не являются специфическими для метода молекулярных орбиталей, а соответствуют более общему уровню рассмотрения, на котором не проявляются различия методов ВС и МО.

Другим исследователем, внесшим большой вклад в развитие молекулярно-орбитальной теории, был американский ученый Малликен. В 1925 г., изучая закономерности в молекулярных спектрах и сопоставляя их с атомными, он отметил сходство в спектральных характеристиках молекул CN, CO>+, N>2>+, ВО, BeF со спектром Na. Подобные аналоги были установлены в 1925-1927 гг. в работах Мекке, Бэрджа, Шпонер и других на примере молекул СО и N>2 и атома Mg, молекулы NO и атома Аl и т. п. Так, сопоставляя структуру молекулярных и атомных спектров, Бэрдж предположил, что энергетические уровни, связанные с валентными электронами молекулы, соответствуют "во всех существенных аспектах", т. е. по характеру вырождения, мультиплетности и взаимному расположению на энергетической шкале, уровням, на которых находятся валентные электроны в изоэлектронных, точнее изовалентноэлектронных, атомах. По предложению Бэрджа, молекулярные уровни стали обозначаться теми же буквами (s, p, d, f,... и т. п.), что и атомные, но только заглавными. Его обозначения >1S, >1Р, >lD, >2S, >2Р соответствуют современным:

(с подуровнями >2>1>/2 и >2>3>/2).

Указанные аналогии натолкнули Малликена на мысль, что каждому электрону в молекуле можно приписать определенную орбиту [64-65]. Например, электроны в молекулах CN и ВО должны характеризоваться квантовыми числами, аналогичными квантовым числам в атоме Na (хотя эти молекулы имеют на два K-электрона больше). Созданная Малликеном теория в значительной степени основана на изложенных выше идеях Хунда. Малликен отмечает, что интерполяция между случаями строгб разделенных атомов и объединенного атома, проводившаяся Хундом, оказывается полезной для оценки электронного состояния двухатомных молекул. В частности, модель объединенного атома позволяет использовать принцип Паули для определения максимально возможного числа электронов, соответствующих любым заданным квантовым числам. Квантовые числа, характеризующие электронное состояние молекулы, получаются из квантовых чисел, соответствующих электронному состоянию объединенного атома в предположении, что этот атом помещен в сильное электрическое поле. Наложение последнего эквивалентно мысленному расщеплению ядра объединенного атома на отдельные ядра, входящие в молекулу.

Однако реальная последовательность термов по энергии может отличаться (и весьма значительно!) от последовательности, имеющей место в сильном электрическом поле. Распределение электронов для основного состояния молекулы может соответствовать их распределению в некотором возбужденном состоянии объединенного атома, и наоборот.

Так как основная часть информации о прочности химических связей основана на спектроскопических данных, Малликен высказал предположение, что при анализе электронной структуры молекулы может оказаться полезным метод, аналогичный использованному Бором для определения электронной конфигурации атомов. Этот метод состоит в том, что все электроны мысленно удаляются из атома, а затем по одиночке возвращаются в атом, занимая доступные орбиты с наиболее низкой энергией. Конечно, применение этого метода к молекулам затруднялось тем, что отсутствовала достаточная информация об энергетической последовательности орбит в молекуле. Для решения этой проблемы были использованы корреляции между предельными случаями объединенного и изолированного атомов. Развитие метода Хунда Малликеном, по мнению последнего, "состояло прежде всего в попытке определить квантовые числа отдельных электронов" [65, с. 190]. При понижении сферической симметрии изолированного атома до аксиальной электроны, характеризующиеся одними и теми же квантовыми числами n и l, но различными |m|[24], уже не будут эквивалентными. Их энергия теперь зависит также от абсолютной величины квантового числа m. Таким образом, атомная оболочка ns не расщепляется, в то время как оболочки np,nd,... расщепляются на две, три,... оболочек. Одна из них (σ-типа) характеризуется нулевым значением проекции одноэлектронного момента импульса на ось квантования. Она может заполняться не более чем двумя электронами с противоположными спинами. Каждой из остальных оболочек (π-, σ-...типов) соответствуют два не нулевых, равных по абсолютной величине, но различающихся знаком, значения проекции момента импульса. Соответственно эти оболочки могут заполняться не более чем четырьмя электронами.


Еще от автора Игорь Сергеевич Дмитриев
Упрямый Галилей

В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника.


Путешественники во времени. Историко-фантастическая эпопея. Книга 4. Олег и Марина в 7011 году

Олег с Игорем едут за город поиграть в страйкбол. Неожиданно встречают Марину, которая приехала с подругой Таней покататься на велосипедах. Между Мариной и Олегом вновь вспыхивает охладевшая было любовь, а Игорь в восторге от Тани. Прощаясь, Игорь назначает девушке свидание в парке, а в следующие выходные обе пары опять встречаются на старом месте. Из-за пустяка Игорь ссорится с Таней, но сам же от этого сильно страдает. Помирившись, вчетвером опять едут на велосипедах на то же брошенное предприятие. Но ребят заметил охранник, и они прячутся в каком-то «батискафе», который оказался машиной времени.


Остров концентрированного счастья. Судьба Фрэнсиса Бэкона

Несмотря на то, что философские идеи Фрэнсиса Бэкона хорошо изучены и описаны, его жизненному пути в литературе уделяется мало внимания. Монография И. С. Дмитриева, первая на русском языке биография Ф. Бэкона, написана на основе архивных материалов и широкого круга первоисточников. Жизнь героя книги представлена в контексте сложной, наполненной драматическими событиями эпохи в истории Англии второй половины XVI – начала XVII столетий. Один из самых одаренных людей своего времени, Фрэнсис Бэкон отдавал много сил и времени не только философии, но и активной политической деятельности.


Путешественники во времени. Книга 1. Сергей и Александра

Историческая эпопея включает в себя 5 книг. Герой первой – молодой физик Сергей – работает в институте над созданием машины времени. Поспорив с друзьями, что возьмет интервью у "секретного" физика, в институт приходит студентка-журналист Александра. Она блестяще справилась со своей задачей, но влюбилась в физика. Сергей чувствует, что полюбил девушку-студентку, но кто она и как ее найти – не знает. Саша, чтобы попасть к "своему физику", просит подругу, папа которой руководитель в этом институте, помочь устроиться на практику.


Рекомендуем почитать
Пути развития химии. Том 2. От начала промышленной революции до первой четверти XX века

Вопреки сложившейся традиции излагать историю науки как историю идей и теорий автор из ГДР В. Штрубе дает оригинальную трактовку развития науки: он стремится показать, как открытия, изобретения, накопление новых знаний и становление научной химии способствовали развитию общества. В данном томе рассматривается развитие химии в период от промышленной революции до начала XX в. Для широкого круга читателей.


Російсько-український словник термінів фізики і химії

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Карнавал молекул. Химия необычная и забавная

Книга в форме занимательных бесед предлагает интересные примеры и истории, которые позволят родителям привлечь внимание школьников к изучению естественных наук, преподавателям средней школы – сделать занятия более увлекательными, а также познакомит студентов и аспирантов, выбравших химию своей специальностью, с тем, как ход рассуждений исследователя позволяет получать интересные результаты. В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов.


Общая и Неорганическая химия с примерами решения задач

Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания.


Язык химии. Этимология химических названий

Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.


Химия завтра

Химия завтра… О какой химии пойдет речь?О той, которая разгадывает тайны атомно-молекулярных построек, создает новые соединения, помогает одевать, обувать людей, строить города, машины.О той, которая разгадывает тайны белковых молекул, составляющих основу живого, и помогает сохранять здоровье человека, продлевать его жизнь, умножать плодородие земли, создавать изобилие продуктов.Будущее химии кажется сейчас совершеннейшей фантастикой. Материалы по заказу… Синтетический белок… Искусственная пища… Замена вышедших из строя органов человеческого тела… И многое, многое другое.Об этих «чудесах», становящихся реальностью на наших глазах, или таких, которые суждено будет увидеть только нашим потомкам, вы и прочтете в этой книге.