Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - [16]

Шрифт
Интервал

Гайтлер не определял численное значение J>Q, он лишь качественно представил кривые энергии взаимодействия D (R) для молекулы N>2 (рис. 12).

Рис. 12. Кривые энергии взаимодействия атомов D (R) для молекулы N>2 по Гайтлеру

Независимо от Гайтлера аналогичный подход был развит Лондоном, работы которого [60, 61] отличались, по существу, лишь более детальным изложением вопроса, а также более подробным исследованием химических примеров. В частности, им была установлена связь между валентностью атома и его спектроскопической мультиплетностью (магнитной тонкой структурой). По определению Лондона, валентность атома равна полному электронному спину в единицах >h/>2 и поэтому на единицу меньше мультиплетности рассматриваемого атомного состояния [61, с. 49]. Кроме того, Лондон указал на возможность спектроскопического определения кратности ковалентной химической связи.

Пусть атомы характеризуются валентностью V>1 и V>2 и, следовательно, мультиплетностью по спину M>1 = V>1 + 1 и М>2 = V>2 + 1. Если при взаимодействии атомов связываются по одной валентности каждого атома, то в молекуле остается V(1) = V>1 + V>2 — 2 свободных валентностей и ее спиновая мультиплетность M(1) = M>1 + M>2 -3 (в круглых скобках указана кратность связи). В случае двойной связи V(2) = V>1 + V>2 — 4 и М(2) = M>1 + М>2 — 5.

В общем случае j-кратной связи

(3.11)

(3.12)

Равенство j нулю означает отсутствие валентной связи.

Изложенный выше формализм, развитый независимо Гайтлером и Лондоном в 1927-1928 гг., интерпретирует понятие валентности как число спиновых моментов, спаренных при образовании молекулы. Однако в рамки этого формализма не укладывались молекулы, основное состояние которых является триплетным (В>2, O>2 и др.)" Так, в случае молекулы В>2 спаривания спиновых моментов электронов не происходит и, согласно (3.11), химическая связь вообще не должна образовываться. В связи с этим можно было бы повторить слова Хаксли, видевшего великую трагедию науки "в умерщвлении прекрасной теории мерзким фактом". Однако приведенные примеры, на наш взгляд, указывают не на ошибочность концепции спин-валентности, а на необходимость дополнения ее концепцией орбитальной валентности*. Идеи, позволившие осуществить такое обобщение[7] были впервые высказаны Гайтлером в июне 1929 г. [49] и явились естественным обобщением созданной им и Лондоном теории ковалентной связи.

"Прежняя теория валентности,- писал Гайтлер,- рассматривала лишь те случаи, когда имело место только обменное вырождение. Однако для галогенов и элементов группы кислорода[8] это уже не верно. Их основным состоянием является Р-состояние, что говорит о наличии вырождения по магнитному квантовому числу. Расчеты автора показывают, что учет этого вырождения приводит к величине энергии связи между моментами количества движения l (bahnimpulsen l) того же порядка, что и энергия обмена. Вероятно, эта энергия также ответственна за образование молекул. Кроме рассматривавшейся ранее спин-валентности существует еще другой вид валентности (line zweite Arte Valenz)- l-валентность для атомов с l>0. При этом могут насыщаться только валентности одинакового вида. Вероятно, здесь мы имеем более сложные соотношения, чем в случае спиновых валентностей" [49, с. 547]. В качестве примера использования концепции орбитальной валентности обратимся к молекуле В>2. Атом бора в основном состоянии характеризуется электронной конфигурацией 1s>22s>22p и термом >2Р. В соответствии с этим электронную структуру молекулы В2 можно было бы описать двухэлектронной функцией Гайтлера-Лондона, составленной, однако, из р-орбиталей атома бора[9]. Спариванию одноэлектронных спиновых моментов соответствовало бы расщепление молекулярного терма на два — синглетный и триплетный — согласно схеме

причем в соответствии с теорией Гайтлера и Лондона основному состоянию должен соответствовать синглетный терм. Но, как известно, основное состояние молекулы В>2 является триплетным, и поэтому указанный подход не применим. Образование химической связи в молекуле В>2 объясняется не спариванием спиновых моментов, а, очевидно, другими причинами. Для определения этих причин обратимся к идее Гайтлера о том, что образование связи обусловлено расщеплением вырожденных атомных термов при химическом взаимодействии, но не будем предполагать, что это вырождение является вырождением по спину. Так, для молекулы В>2 наряду с рассмотренным выше взаимодействием спиновых моментов может осуществляться взаимодействие орбитальных моментов по схеме

Здесь квантовые числа λ и Λ определяют абсолютную величину проекции момента импульса на ось молекулы. Так как рассматривается триплетное (по спину) состояние молекулы, принцип Паули и соображения симметрии требуют учета лишь значения λ = 1; т. е. дважды вырожденных 2pπ-орбиталей. Состояние с S = 1 и Λ = 0 соответствует >3∑-терму молекулы В>2. Реализация именно этого терма означает, что расщепление атомных >2P-термов вследствие спаривания орбитальных моментов (λ = 1) больше, чем расщепление, обусловленное спариванием спиновых моментов.

Обычно утверждают, что понятие спаривания для молекул В


Еще от автора Игорь Сергеевич Дмитриев
Упрямый Галилей

В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника.


Путешественники во времени. Историко-фантастическая эпопея. Книга 4. Олег и Марина в 7011 году

Олег с Игорем едут за город поиграть в страйкбол. Неожиданно встречают Марину, которая приехала с подругой Таней покататься на велосипедах. Между Мариной и Олегом вновь вспыхивает охладевшая было любовь, а Игорь в восторге от Тани. Прощаясь, Игорь назначает девушке свидание в парке, а в следующие выходные обе пары опять встречаются на старом месте. Из-за пустяка Игорь ссорится с Таней, но сам же от этого сильно страдает. Помирившись, вчетвером опять едут на велосипедах на то же брошенное предприятие. Но ребят заметил охранник, и они прячутся в каком-то «батискафе», который оказался машиной времени.


Путешественники во времени. Книга 1. Сергей и Александра

Историческая эпопея включает в себя 5 книг. Герой первой – молодой физик Сергей – работает в институте над созданием машины времени. Поспорив с друзьями, что возьмет интервью у "секретного" физика, в институт приходит студентка-журналист Александра. Она блестяще справилась со своей задачей, но влюбилась в физика. Сергей чувствует, что полюбил девушку-студентку, но кто она и как ее найти – не знает. Саша, чтобы попасть к "своему физику", просит подругу, папа которой руководитель в этом институте, помочь устроиться на практику.


Остров концентрированного счастья. Судьба Фрэнсиса Бэкона

Несмотря на то, что философские идеи Фрэнсиса Бэкона хорошо изучены и описаны, его жизненному пути в литературе уделяется мало внимания. Монография И. С. Дмитриева, первая на русском языке биография Ф. Бэкона, написана на основе архивных материалов и широкого круга первоисточников. Жизнь героя книги представлена в контексте сложной, наполненной драматическими событиями эпохи в истории Англии второй половины XVI – начала XVII столетий. Один из самых одаренных людей своего времени, Фрэнсис Бэкон отдавал много сил и времени не только философии, но и активной политической деятельности.


Рекомендуем почитать
Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева

«Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева» посвящена одному из величайших достижений науки – Периодической системе химических элементов, удивительно сложному человеческому изобретению. Вы познакомитесь с историей элементов, окунетесь в мир химии и удивительных превращений, узнаете тайны науки, которые тщательно скрывались и оберегались. Для всех увлеченных и неравнодушных.


Энергия жизни. От искры до фотосинтеза

В этой книге Азимов рассказывает о том, как люди научились использовать энергию — сумели заставить работать на себя огонь, воду, ветер, пар, электричество и солнце. Большое внимание уделено изобретениям, открывшим новые источники энергии, распахнувшие перед человечеством двери новой эпохи. Автор также увлекательно повествует о том, как вырабатывается энергия в живых организмах, какие процессы происходят на уровне молекул в органической и неорганической материи.


Пособие кислотчику сульфитно-целлюлозного производства

Данное пособие создано для специалистов совершенствующих свое мастерство на целлюлозно-бумажных комбинатах.Если Вам понравилось и помогло это пособие, и хотите получить другие в fb-2 — обращайтесь: [email protected].


Металлы, которые всегда с тобой

Металлы, находящиеся в незначительных количествах внутри живого организма, называют микроэлементами. Это не случайные примеси, а важнейшие составляющие биологически активных веществ: они обеспечивают нормальный ход биохимических процессов, стимулируют обмен веществ, активно участвуют в кроветворении, влияют на рост, размножение и наследственность организмов. Вот почему их еще называют металлами жизни. Эта книга о десяти важнейших биометаллах, о трудном пути познания роли для всего живого...


Золото, пуля, спасительный яд. 250 лет нанотехнологий

Генрих Эрлих – не только доктор химических наук, профессор Московского государственного университета и серьезный ученый, но и прекрасный научный популяризатор, умеющий увлекательно, просто, без единой формулы рассказать об очень сложных вещах. Говоря о нанотехнологиях, он разрушает множество мифов, например о том, что эти чудесные технологии по явились только сегодня. На самом деле, они существуют уже по крайне мере 250 лет, и за эти годы произошло много интересного – и в науках, и в технологиях. Обо всем этом, а еще и о судьбах удивительных людей, без которых наш мир сегодня был бы совсем другим, – эта книга.


Пуговицы Наполеона: Семнадцать молекул, которые изменили мир

Сенсационное разоблачение! Пенни Лекутер, преподаватель химии из Канады, и практикующий американский химик Джей Берресон показывают изнанку всемирной истории. Не боги, не цари, не герои, не массы и даже не большие идеи — миром правит химия. Невидимые глазу молекулы приводят в движение народы, армии и флоты, рождают и обращают в прах города и целые цивилизации, двигают горы и толкают людей на великие подвиги, чудовищные преступления и грандиозные авантюры…Авторы рисуют портреты семнадцати молекул, оказавших и оказывающих самое значительное влияние на нас и нашу планету.