Коллайдер - [27]

Шрифт
Интервал

электроны прыгают, но давала возможность точно вычислить, с какой вероятностью они это сделают.

«Матричная механика» Гейзенберга ввела в физику новые абстрактные понятия, которые сильно смущали ученых старой закалки и были восприняты в штыки некоторыми видными физиками, понимавшими, что из этих понятий следует. Один из ярких примеров - Эйнштейн, бывший непримиримым противником матричной механики. Она накинула на атом - да и на всю природу в этих и меньших масштабах - покров неизвестности, провозгласив: не все физические свойства можно измерить за раз.

Со свойственным молодости духом мятежа Гейзенберг начал свое изложение с того, что отринул большинство представлений, безраздельно властвовавших в среде старших. Он отказался воспринимать электрон как летающую по орбите частицу и заменил его чистой абстракцией: математическим состоянием. Чтобы вычислить положение, импульс (массу, умноженную на скорость) и другие наблюдаемые физические свойства, Гейзенберг умножал это состояние на различные величины. Его научный руководитель, геттингенский физик Макс Борн, предложил записывать эти величины в виде таблиц, или матриц. Отсюда термин «матричная механика» (синоним квантовой механики). Вооружившись мощным математическим аппаратом, Гейзенберг уже не видел преград на пути в глубины атома. Потом он вспоминал: «У меня было ощущение, будто через поверхность атомных явлений мне открывается нечто удивительно красивое, и у меня чуть ли не кружилась голова от одной мысли, что мне предстоит окунуться в этот богатый мир математических структур, которые природа так щедро передо мной разложила»>24.

В классической физике Ньютона положение и импульс можно измерить одновременно. В квантовой механике, как изящно показал Гейзенберг, дело обстоит совсем не так. Если подействовать на состояние матрицами координаты и импульса, порядок этих операций имеет большое значение. Когда сначала применяешь координатную матрицу, а потом матрицу импульса, ответ, скорее всего, будет другой, нежели в случае, когда делаешь наоборот: сначала импульс, а координаты потом. Операции, где порядок выполнения имеет значение, называются некоммутативными. С коммутативными вариантами мы все хорошо знакомы: в арифметике это умножение и сложение («от перемены мест слагаемых…»). Из-за некоммутативности становится невозможным одновременно узнать обе физические величины с идеальной точностью. Этот факт Гейзенберг сформулировал в форме принципа неопределенностей.

Например, если зафиксировать положение электрона, принцип неопределенностей Гейзенберга в квантовой механике гарантирует, что импульс по максимуму размоется. Но импульс пропорционален скорости, а значит, электрон не может нам сообщить в одно и то же время и где он находится, и с какой скоростью летит. У электрона не то что семь, а неизвестно сколько пятниц на неделе. Если бы планеты вели себя как электроны, древние астрологи забросили бы свое занятие, не успев за него взяться.

Хотя, по Гейзенбергу, квантовой механике по самой ее природе присущи неопределенности, она дает рецепт, как вычислить вероятность. То есть она не гарантирует, что вы выиграете пари, но говорит, каковы ваши шансы. Скажем, квантовая механика дает вероятность того, что электрон из заданного положение перепрыгнет в какое-то другое. Если эта вероятность - ноль, вы знаете наверняка, что такой переход запрещен. Если нет, он разрешен, и в атомном спектре можно будет увидеть линии с соответствующей частотой.

В 1926 г. физик Эрвин Шрёдингер предложил более легкую для понимания версию квантовой механики, так называемую волновую механику. Развивая теорию, построенную французом Луи де Бройлем, Шрёдингер стал интерпретировать электроны как «волны материи». Что-то вроде световых волн, но представленных не электромагнитным излучением, а материальными частицами. Как эти волновые функции реагируют на физические силы, описывает уравнение, носящее имя Шрёдингера. Скажем, в атоме волновые функции электронов под действием электростатического притяжения со стороны ядра образуют «облака» разных форм, энергий и с разной средней удаленностью от центра. Эти облака не имеют материального наполнения. Они лишь показывают, с какой вероятностью электрон окажется в той или иной точке пространства.

Эти волновые структуры можно уподобить колебаниям гитарной струны. На закрепленной с обоих концов струне после щипка возникает стоячая волна. Лежа на пляже, мы видим бегущие волны, которые накатывают на берег. В отличие от них стоячей волне суждено двигаться только вверх-вниз. Но даже при таком ограничении у нее может быть несколько вершин (максимумов): одна, две или больше - главное, что это число должно быть целым, а не дробным. Волновая механика устанавливает соответствие между главным квантовым числом электрона и числом максимумов, что естественным образом объясняет, почему существуют именно эти состояния, а не другие.

К немалому огорчению Гейзенберга, многие его коллеги предпочли картину Шрёдингера. Возможно, потому что волновые процессы были им как-то ближе - проглядывает аналогия и со звуком, и со светом… Матрицы выглядели слишком отвлеченно. Впрочем, проницательный венский физик Вольфганг Паули доказал, что модели Гейзенберга и Шрёдингера полностью эквивалентны. Это как цифровая и аналоговая индикация - ни одна из них не уступает другой, а какую выбрать - дело вкуса.


Еще от автора Пол Хэлперн
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Последний рейс "Лузитании"

В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.