Коллайдер - [29]
Ее изобрел шотландский физик Чарлз Вильсон. Во время восхождения на гору Бен-Невис он заметил, что во влажном воздухе водяные капельки охотнее конденсируются в присутствии ионов, то есть заряженных частиц. Заряды притягивают молекулы, и те осаждаются из воздуха, оставляя в области, насыщенной электричеством, конденсационный след. Вильсон понял, что так можно регистрировать невидимые глазом частицы. Он взял камеру, заполнил ее холодным влажным воздухом и стал наблюдать цепочки сконденсировавшегося пара от пролетающих мимо заряженных частиц. Такой же след оставляют в небе реактивные самолеты. Эти треки, запечатленные на фото, дают кладезь ценной информации о ходе эксперимента.
Хотя первый опытный образец своей камеры Вильсон собрал еще в 1911 г., в ядерной физике их начали применять только с 1924 г. Именно тогда Патрик Блэкетт, аспирант из группы Резерфорда, задействовал этот прибор, чтобы зарегистрировать протоны от радиоактивного распада азота. Его данные находились в отличном согласии со сцинтилляционными экспериментами Резерфорда, предоставляя тем самым неопровержимое доказательство искусственного ядерного распада.
Ядро населяют не только протоны. В 1920 г. своим легендарным шестым чувством Резерфорд угадал, что помимо протонов ядро служит убежищем и для каких-то нейтральных частиц. Двадцать лет спустя ученик Резерфорда Джеймс Чэдвик нашел нейтрон - по массе такой же, как протон, но без заряда, а Гейзенберг вскоре после этого написал историческую статью «О структуре атомного ядра», где изложил принятую сейчас модель ядра, состоящего из протонов и нейтронов.
Эта картина способна объяснить различные виды радиоактивности. Альфа-распад происходит, когда ядро испускает одновременно два протона плюс два нейтрона - исключительно устойчивую комбинацию. Затем бета-распад имеет место, когда нейтрон порождает протон и электрон. Из этих самых электронов и состоит бета-излучение. Но на этом, как показал Паули, история не кончается: в распаде нейтрона куда-то исчезает некоторая доля импульса и энергии. Паули решил приписать их почти неуловимой частице, которая потом была обнаружена и названа нейтрино. Наконец, гамма-компонента возникает, когда ядро переходит из квантового состояния с высокой энергией в низкоэнергетичное состояние. Альфа и бета-распад меняют количество протонов и нейтронов в ядре, и образуется новый химический элемент, а гамма-лучи оставляют состав ядра неизменным.
Блестящие открытия и методы Резерфорда преподали нам урок: для того чтобы заглянуть в мир природы на маленьких расстояниях, надо обратиться к элементарным частицам. Их источником на заре ядерной физики служили фонтанирующие альфа-частицами радиоактивные вещества. Они как нельзя лучше подходили для экспериментов по рассеянию, из которых Гейгер и Марсден увидели, что в атоме есть миниатюрное ядро. Но уже Резерфорд понимал: без более энергичных инструментов нечего и думать, чтобы серьезней и глубже проникнуть в природу ядра. Для ядерной крепости понадобится особо крепкий таран, а точнее, тараны - частицы, разогнанные в искусственных условиях до феноменально высоких скоростей. Резерфорд не без оснований решил, что Кавендишская лаборатория сумеет построить ускоритель частиц, хотя для его воплощения, признавал ученый, потребуются определенные теоретические усилия. К счастью, одному ловкому молодому человеку удалось улизнуть из сталинской крепости и провезти с собой на Фри-Скул-Лейн багаж квантовых знаний.
Ударными темпами. Первые ускорители
Нам нужен прибор, который давал бы разность потенциалов в 10 миллионов вольт, потребляя при этом несколько киловатт мощности, и который бы без угрозы безопасности можно было поставить в помещении умеренных размеров. Нам, кроме того, нужна труба с откачанным воздухом, выдерживающая такое напряжение… Я не вижу препятствий, могущих помешать построить систему с перечисленными параметрами.
Эрнест Резерфорд. Речь на открытии Лаборатории высоких напряжений фирмы «Метрополитен-Виккерс».
Манчестер, Англия, 1930 г.
Народный комиссариат просвещения РСФСР дает Георгию Гамову (1904-1968), одному из лучших советских физиков, долгожданное одобрение на годичную командировку в Кавендишскую лабораторию. Из-за досадной врачебной ошибки оно чуть не обернулось отказом. Во время решающего медобследования врач нечаянно перепутал цифры в кровяном давлении и констатировал у Гамова заболевание сердца. Но недоразумение разрешилось, и путь был открыт. Затраты на дорогу и пребывание Гамову великодушно предложил оплатить Фонд Рокфеллера. Стипендия из средств, вырученных от продажи нефти, не совсем вписывалась в революционную идеологию Ленина, однако тогда Советы воспринимали готовность лучшей в мире лаборатории ядерных исследований принять к себе одного из достойных сынов родины как победу советской системы образования.
История ускорителей только выиграла от того, что Гамов приехал в Англию. Благодаря его теоретическим находкам стало намного понятней, как разломить ядро, а Кавендишская лаборатория в погоне за мощными атомными дробилками выбилась в первые ряды. Исследования Гамова и безупречные экспериментальные работы его коллег на некоторое время превратили Кавендиш в ведущий мировой центр ядерной физики.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.