Когда прямые искривляются. Неевклидовы геометрии - [3]
Если точка С является началом координат, то точка А имеет координаты (2, 1), а точка В — координаты (0, 5). Таким образом, евклидово расстояние составляет 4,47 единиц, а расстояние такси — 6 единиц. Обратите внимание, что положение начала координат не влияет на результат при расчете расстояний.
В математике метрикой или расстоянием между двумя точками А и В называется такое соотношение, которое удовлетворяет условиям положительности, симметрии и неравенства треугольника. А именно,
1) δ(A, В) >= 0, и из δ(A, В) = 0 следует, что А = В;
2) δ(A, В) = δ(В, A);
3) δ(А, В) =< δ(А, С) + δ(С, В).
Евклидово расстояние d(A, В) и расстояние такси d>t(A, В) — два примера расстояний, которые удовлетворяют указанным выше условиям. В общем случае d(A, В) =< d>T(A, В).
* * *
ГЕРМАН МИНКОВСКИЙ (1864–1909)
Немецкий математик Герман Минковский разработал геометрическую теорию чисел — геометрический метод решения задач из теории чисел. В 1907 г. он понял, что специальная теория относительности Эйнштейна может быть лучше выражена в терминах неевклидовой геометрии четырехмерного пространства. Это пространство с тех пор называется пространством Минковского. В нем время и пространство являются взаимосвязанными измерениями и образуют четырехмерное пространство, так называемое пространство-время. Именно таким подходом позже воспользовался Эйнштейн при работе над общей теорией относительности.
* * *
В евклидовой геометрии имеется признак равенства треугольников по двум сторонам и углу между ними, который работает следующим образом.
Пусть у нас имеются два треугольника АВС и А>1В>1С>1 со сторонами соответственно АВ, АС, ВС и А>1В>1, A>1C>1, B>1C>1. Тогда, если АВ = A>1B>1, АС = А>1С>1и угол ВАС равен углу В>1A>1С>1, то сторона ВС равна стороне B>1C>1, то есть треугольники равны.
Другими словами, если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то третьи стороны в треугольниках также будут равны. Такие треугольники равны. Однако этот очевидный результат оказывается ложным в геометрии такси.
Рассмотрим треугольники с вершинами А = (3,1), В = (1, 3), С = (5, 3) и А>1 = (4, 4), В>1 = (8, 4), С>1 = (4, 0), как изображено на рисунке:
Можно показать, что
d>T(A, B) = 4 = d>T(A>1, B>1),
а также
d>T(A, C) = 4 = d>T(A>1, C>1),
Таким образом, по формуле расстояния такси b = b>1 и с = с>1. Обратите внимание, что угол ВАС также равен углу В>1А>1С>1(в данном примере они равны 90°). Несмотря на выполнение условий признака равенства, стороны а и а; наших треугольников имеют разную длину. Это совершенно разные треугольники, так что для них признак равенства треугольников из евклидовой геометрии не работает.
Круги встречаются повсеместно, как в естественных, так и в искусственных мирах, и, следовательно, это, пожалуй, простейшая из геометрических фигур, и ее легче всего описать. Подумав о круге, мы сразу вспоминаем множество круглых объектов, так что нам совсем нетрудно представить себе эту форму. Например, если взять колесо велосипеда, очевидно, что все спицы имеют одинаковую длину, иначе было бы невозможно на нем ездить. Все спицы одинаковой длины, потому что все точки на ободе находятся на одном и том же расстоянии от центра. Теперь сформулируем точное определение окружности на плоскости.
Геометрическое место точек плоскости, равноудаленных от заданной точки на заданное расстояние, называется окружностью.
Данная фиксированная точка называется центром окружности, а заданное расстояние — радиусом окружности.
Таким образом, если мы выберем точку Р на окружности (с центром в точке А и радиусом r), то d(P, А) = r. Например, если центр находится в точке (2, -1), а радиус равен 3, то все точки Р, удовлетворяющие нашему соотношению для А и r, образуют окружность.
На приведенном выше рисунке для изображения точек окружности использовалась формула евклидова расстояния, но если применять формулу расстояния такси, то получится совсем другой, очень странный результат, как можно видеть на следующем рисунке.
Мы можем проверить, что точки Р на этой «окружности» такси действительно удовлетворяют соотношению d>T = (Р, А) = r при А = (2, -1) и r = 3. В геометрии такси возможно то, что всегда казалось абсурдным: мы можем круг превратить в квадрат!
Если вычислить длину окружности нашего такси-круга по классической формуле l = 2·π·r, то мы получим l = 2 ·π· 3 = 18,849. Однако по формуле расстояний такси длина окружности составит 6 + 6 + 6 + 6 = 24 единицы, и, кроме того, результат совсем не будет содержать π.
Многие другие формы, известные из геометрии Евклида, выглядят странно в геометрии такси. Например, эллипс представляет собой множество точек, расположенных вокруг двух фиксированных точек, называемых фокусами. Сумма расстояний от любой точки эллипса до фокусов постоянна. Круг является частным случаем эллипса, когда оба фокуса находятся в одной точке.
В следующем примере фокусами являются точки А = (—3, 0) и В = (3, 0), а большая ось эллипса (наибольший диаметр) составляет 10 единиц. Следовательно, эллипс состоит из всех точек
Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.