Кентерберийские головоломки - [76]

Шрифт
Интервал



Приведенное на рисунке расположение удовлетворяет условию, согласно которому никакие две одинаковые буквы не должны находиться на одной вертикали, горизонтали или диагонали; и оно приводит к тому, что данные 5 слов удается прочитать 20 раз – 6 по горизонтали, 6 по вертикали, 4 вдоль диагоналей, отмеченных стрелками слева, и 4 вдоль диагоналей, отмеченных стрелками справа. Это максимум.

Четыре множества из восьми букв можно расположить на доске с 64 клетками 604 различными способами, при которых никакие две одинаковые буквы не находятся на одной прямой. При этом расположения, получающиеся друг из друга с помощью поворотов и отражений, не считаются различными и, кроме того, не учитываются перестановки внутри самих букв, то есть, например, перемена местами букв L и Е.

Далее, странно не только то, что приведенное расположение с 20 словами оказывается максимальным, но также и то, что максимум можно получить лишь из этого расположения. Однако если вы поменяете местами в данном решении буквы V с буквами I, a L – с Е, то получите по-прежнему 20 слов. Следовательно, существуют 2 способа достичь максимума из одного и того же расположения. Минимальное число слов равно нулю, то есть буквы можно расположить таким образом, чтобы ни по какому направлению не удавалось прочесть ни одного слова.


131. Обозначим буквами А, К, Q, J соответственно туза, короля, даму и валета, а буквами D, S, H, С – бубны, пики, червы и трефы. На рисунке приведены два способа, 1 и 2, расположения букв каждой группы, при которых никакие две одинаковые буквы не располагаются на одной прямой, хотя поворот на четверть оборота расположения 1 приведет к расположению 2.



Если мы наложим друг на друга эти два квадрата, то получим расположение 3, дающее одно решение. Но в каждом квадрате мы можем переставить буквы на верхней горизонтали 24 способами, не меняя схемы расположения. Так, на рисунке 4 буквы S помещены на место букв D из расположения 2, буквы H – на место S, С – на место H и D – на место С. Отсюда, очевидно, следует, что два исходных расположения можно скомбинировать 24 × 24 = 576 способами. Однако ошибка, которую сделал Лябосн, состояла в том, что А, К, Q, J он располагал способом 1, a D, S, Н, С – способом 2. Таким образом, он учел отражения и повороты на пол-оборота, но проглядел повороты на четверть оборота. Очевидно, их можно менять местами. Поэтому, если отражения и повороты считать новыми решениями, правильным ответом будет 2 × 576 = 1152. По-другому можно сказать, что пары на верхней горизонтали можно записать 16 × 9 × 4 × 1 = 576 различными способами, а учитывая то, что квадрат можно заполнить двумя способами, получаем всего 1152 решения.


132. Как отмечалось, при данных условиях поместить все изображенные на рисунке буквы в ящик невозможно, но головоломка состояла в том, чтобы поместить максимально возможное количество таких букв.

Здесь требуется слегка раскинуть мозгами и внимательно исследовать задачу, иначе мы придем к поспешному заключению, что сперва следует расставить все 6 букв одного типа, затем – все 6 букв другого типа и т. д. Поскольку существует лишь один способ (вместе с его поворотами), с помощью которого 6 одинаковых букв удается расставить так, чтобы никакие две не оказались на одной прямой, читатель обнаружит, что, расположив 4 типа букв по 6 экземпляров каждого типа, он займет все ячейки, кроме 12, расположенных вдоль двух больших диагоналей. Следовательно, он не сумеет разместить еще более чем по две буквы двух оставшихся типов, так что всего останется 8 пустых ячеек (см. рисунок 1).



Секрет состоит, однако, в том, что не следует пытаться размещать все 6 букв каждого типа. Можно выяснить, что если мы ограничимся лишь 5 буквами каждого типа, то это количество (всего 30) можно разместить в ящике, и при этом останется лишь 6 пустых ячеек. Однако правильное решение состоит в том, чтобы разместить по 6 букв каждого из двух типов и по 5 букв оставшихся четырех типов. Исследование рисунка 2 покажет, что здесь присутствует по 6 С и D и по пять А, В, Е и F. Следовательно, остаются лишь 4 пустые ячейки, и никакие 2 одинаковые буквы не располагаются на одной прямой.


133. Решение данной головоломки приведено на рисунке. На доске можно расположить только 8 ферзей или 8 ладей так, чтобы они не атаковали друг друга, тогда как соответствующее максимальное число для слонов равно 14, а для коней – 32.



Но поскольку всех этих коней нужно поместить на клетки одинакового цвета, тогда как ферзи уже занимают по 4 клетки каждого цвета, а слоны – по 7 клеток каждого цвета, то в результате мы можем поместить на клетки одинакового цвета лишь 21 коня. На пустой доске можно расположить более 21 коня, но мне не удалось это сделать на доске, где «царит теснота». Я думаю, что приведенное решение содержит максимальное число шахматных фигур, однако возможно, что какому-нибудь изобретательному читателю удастся поместить на доску еще одного коня.


134. Фишки можно расположить в следующем порядке:


135. На рисунке показано, как можно наклеить 16 марок на карточку при заданных условиях, причем общая сумма составит 50 пенсов, или 4 шиллинга 2 пенса.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.