Кентерберийские головоломки - [76]

Шрифт
Интервал



Приведенное на рисунке расположение удовлетворяет условию, согласно которому никакие две одинаковые буквы не должны находиться на одной вертикали, горизонтали или диагонали; и оно приводит к тому, что данные 5 слов удается прочитать 20 раз – 6 по горизонтали, 6 по вертикали, 4 вдоль диагоналей, отмеченных стрелками слева, и 4 вдоль диагоналей, отмеченных стрелками справа. Это максимум.

Четыре множества из восьми букв можно расположить на доске с 64 клетками 604 различными способами, при которых никакие две одинаковые буквы не находятся на одной прямой. При этом расположения, получающиеся друг из друга с помощью поворотов и отражений, не считаются различными и, кроме того, не учитываются перестановки внутри самих букв, то есть, например, перемена местами букв L и Е.

Далее, странно не только то, что приведенное расположение с 20 словами оказывается максимальным, но также и то, что максимум можно получить лишь из этого расположения. Однако если вы поменяете местами в данном решении буквы V с буквами I, a L – с Е, то получите по-прежнему 20 слов. Следовательно, существуют 2 способа достичь максимума из одного и того же расположения. Минимальное число слов равно нулю, то есть буквы можно расположить таким образом, чтобы ни по какому направлению не удавалось прочесть ни одного слова.


131. Обозначим буквами А, К, Q, J соответственно туза, короля, даму и валета, а буквами D, S, H, С – бубны, пики, червы и трефы. На рисунке приведены два способа, 1 и 2, расположения букв каждой группы, при которых никакие две одинаковые буквы не располагаются на одной прямой, хотя поворот на четверть оборота расположения 1 приведет к расположению 2.



Если мы наложим друг на друга эти два квадрата, то получим расположение 3, дающее одно решение. Но в каждом квадрате мы можем переставить буквы на верхней горизонтали 24 способами, не меняя схемы расположения. Так, на рисунке 4 буквы S помещены на место букв D из расположения 2, буквы H – на место S, С – на место H и D – на место С. Отсюда, очевидно, следует, что два исходных расположения можно скомбинировать 24 × 24 = 576 способами. Однако ошибка, которую сделал Лябосн, состояла в том, что А, К, Q, J он располагал способом 1, a D, S, Н, С – способом 2. Таким образом, он учел отражения и повороты на пол-оборота, но проглядел повороты на четверть оборота. Очевидно, их можно менять местами. Поэтому, если отражения и повороты считать новыми решениями, правильным ответом будет 2 × 576 = 1152. По-другому можно сказать, что пары на верхней горизонтали можно записать 16 × 9 × 4 × 1 = 576 различными способами, а учитывая то, что квадрат можно заполнить двумя способами, получаем всего 1152 решения.


132. Как отмечалось, при данных условиях поместить все изображенные на рисунке буквы в ящик невозможно, но головоломка состояла в том, чтобы поместить максимально возможное количество таких букв.

Здесь требуется слегка раскинуть мозгами и внимательно исследовать задачу, иначе мы придем к поспешному заключению, что сперва следует расставить все 6 букв одного типа, затем – все 6 букв другого типа и т. д. Поскольку существует лишь один способ (вместе с его поворотами), с помощью которого 6 одинаковых букв удается расставить так, чтобы никакие две не оказались на одной прямой, читатель обнаружит, что, расположив 4 типа букв по 6 экземпляров каждого типа, он займет все ячейки, кроме 12, расположенных вдоль двух больших диагоналей. Следовательно, он не сумеет разместить еще более чем по две буквы двух оставшихся типов, так что всего останется 8 пустых ячеек (см. рисунок 1).



Секрет состоит, однако, в том, что не следует пытаться размещать все 6 букв каждого типа. Можно выяснить, что если мы ограничимся лишь 5 буквами каждого типа, то это количество (всего 30) можно разместить в ящике, и при этом останется лишь 6 пустых ячеек. Однако правильное решение состоит в том, чтобы разместить по 6 букв каждого из двух типов и по 5 букв оставшихся четырех типов. Исследование рисунка 2 покажет, что здесь присутствует по 6 С и D и по пять А, В, Е и F. Следовательно, остаются лишь 4 пустые ячейки, и никакие 2 одинаковые буквы не располагаются на одной прямой.


133. Решение данной головоломки приведено на рисунке. На доске можно расположить только 8 ферзей или 8 ладей так, чтобы они не атаковали друг друга, тогда как соответствующее максимальное число для слонов равно 14, а для коней – 32.



Но поскольку всех этих коней нужно поместить на клетки одинакового цвета, тогда как ферзи уже занимают по 4 клетки каждого цвета, а слоны – по 7 клеток каждого цвета, то в результате мы можем поместить на клетки одинакового цвета лишь 21 коня. На пустой доске можно расположить более 21 коня, но мне не удалось это сделать на доске, где «царит теснота». Я думаю, что приведенное решение содержит максимальное число шахматных фигур, однако возможно, что какому-нибудь изобретательному читателю удастся поместить на доску еще одного коня.


134. Фишки можно расположить в следующем порядке:


135. На рисунке показано, как можно наклеить 16 марок на карточку при заданных условиях, причем общая сумма составит 50 пенсов, или 4 шиллинга 2 пенса.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Наша математическая вселенная

Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.