Кентерберийские головоломки - [74]
Дабы избежать повторений при поворотах и отражениях, нужно рассматривать лишь те разрезы, которые начинаются в точках а, b и с. Но заканчиваться разрез должен в точке, расположенной на одной проходящей через центр прямой с точкой начала. Это наиболее важное условие, которое следует помнить. В случае В вы не можете начать разрез в точке а, ибо в противном случае вы пришли бы к случаю Е. Аналогично в случаях С или D вы не должны подходить к ключевой прямой в том же направлении, в каком идет она сама, ибо тогда вы получили бы случай A или В. Если вы действуете способом A или С и начинаете разрез в а, то, чтобы не получилось повторений, вы должны рассматривать соединения лишь в одном из концов ключевой прямой. В других случаях вы должны рассматривать соединения в обоих концах ключевой прямой, но, пройдя а в случае D, поворачивайте всегда либо направо, либо налево (используя лишь одно направление). На рисунках 1 и 2 приведены примеры для случая A; на рисунках 3 и 4 – для случая В; на рисунках 5 и 6 – для случая С, а рисунок 7 – хороший пример случая D. Разумеется, Е – особый тип, допускающий лишь одно решение, поскольку вполне очевидно, что вы не можете начать разрез в b или с.
Вот итоговая таблица:
Я не пытался решить ту же задачу для настоящей доски 8 X 8, ибо, какой бы метод здесь не применялся, чтобы получить ответ, потребуется очень большая работа,
116. Решение показано на рисунке. Можно заметить, что каждая из четырех частей (после проведения разрезов вдоль жирных линий) имеет тот же размер и ту же форму, что и остальные, и, кроме того, содержит по льву и короне.
Две из частей заштрихованы, дабы сделать решение более ясным для глаза.
117. Существует 15 различных способов разрезания доски 5 X5 (с удаленной центральной клеткой) на две части одинаковых размеров и формы. Ограниченность места не позволяет мне привести здесь все соответствующие рисунки, но я помогу читателю нарисовать их самому без малейшего затруднения. В какой бы точке края вы ни начали разрез, заканчиваться он должен в точке, симметричной с ней относительно центра доски. Так, если вы начинаете разрез в точке 1 (рис. слева) вверху, то заканчивать его вы должны в нижней точке 1. Далее, 1 и 2 – единственные две существенно различные точки начала; если мы начнем разрез в других точках, то получим такие же решения.
Направления разрезов в упомянутых 15 способах указаны на рисунке числами. То, что эти числа повторяются дважды, не приведет к недоразумению, ибо каждое последующее число расположено рядом с предыдущим. Любое направление, которое вы изберете при движении сверху вниз, должно быть повторено при движении снизу вверх; одно направление служит точным отражением другого (точнее, переходит в него при повороте доски на 180° вокруг центра).
1, 4, 8.
1, 4, 3, 7, 8.
1, 4, 3, 7, 10, 9.
1, 4, 5, 9
1, 4, 5, 6, 10, 7, 8,
2, 3, 4, 8
2, 3, 4, 5, 9.
2, 3, 4, 5, 6, 10, 9.
2, 3, 4, 5, 6, 10, 7, 8.
2, 3, 7, 8.
2, 3, 7, 10, 9.
2, 3, 7, 10, 6, 5, 9.
2, 3, 7, 10, 6, 5, 4, 8.
Можно заметить, что четвертое направление (1, 4, 3, 7, 10, 6, 5, 9) совпадает с показанным на рисунке справа. Тринадцатое совпадает с решением, приведенным при формулировке задачи, где разрез начинается с боковой стороны, а не сверху доски. Части, однако, окажутся одинаковой формы, если их перевернуть другой стороной кверху, что, как указывалось в условии, не приводит к новому решению.
118. Способ разрезания доски таким образом, чтобы все 4 части оказались одинаковых размеров и формы и содержали по одному драгоценному камню, показан на рисунке. Клетки двух частей заштрихованы, чтобы сделать решение более наглядным.
Быть может, читателю будет небезынтересно сравнить эту головоломку с задачей 14 настоящей книги.
119. Монах, «искушенный в тайных науках», указал отцу Джону, что распоряжение аббата можно легко выполнить, заделав 12 просветов. Они показаны на схеме черными квадратами.
Отец Джон настаивал на том, чтобы заделать 4 угловых просвета, но мудрец объяснил, что желательно заделать не больше просветов, чем это совершенно необходимо, и сказал, предвосхищая лорда Дандриери:
– Единственное стекло может располагаться на одной прямой с самим собой не более чем единственная птица может залететь в угол и толпиться там в одиночестве. В условии аббата говорилось, чтобы ни одна прямая не содержала нечетного числа просветов.
Когда святой отец увидел сделанное, он остался очень доволен и сказал:
– Воистину, отец Джон, ты человек глубокой мудрости, ибо ты сделал то, что казалось невозможным, да еще при этом украсил наше окно крестом святого Андрея, чье имя я получил от моих крестных.
После этого он крепко заснул и на утро поднялся освеженным. Это окно можно было бы и сейчас увидеть целым в монастыре святого Эдмондсбери, если бы он существовал!
120. Максимальное число частей равно 18. Я привожу здесь два решения. Доска с цифрами разрезана таким образом, что восемнадцатая часть имеет при заданных условиях максимальную площадь (8 клеток). Второй вариант выполнен с тем условием, чтобы ни одна из частей не содержала более пяти клеток.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.