Кентерберийские головоломки - [69]
84. Если бы не требовалось, чтобы все квадраты были одинаковых размеров, то ковер можно было бы разрезать на четыре части любым из трех способов, показанных на рисунке. В каждом случае две части, отмеченные буквой А, если их сложить вместе, образуют один из трех квадратов, два другие квадрата состоят из одной части. Но для того, чтобы получить квадраты одинаковых размеров, нам придется разрезать ковер на 6 частей, как показано ад большем рисунке. Часть 1 сама является квадратом, из частей 4 и 5 можно сложить следующий квадрат, а из частей 2, 3 и 6 – третий, все одинакового размера.
Если из этих трех квадратов сложить прямоугольник IDBA, то среднее пропорциональное двух сторон прямоугольника равно стороне равновеликого квадрата. Продолжите AB до С, сделав ВС равным BD, Затем поместите ножку циркуля в точку Е (середина АС) и опишите дугу АС. Я показываю совершенно общий метод превращения прямоугольника в квадраты, но в данном частном случае мы, конечно, можем сразу же поместить ножку циркуля в точку Е, которую искать не приходится. Продолжим BD до пересечения с дугой в точке F, и BF окажется искомой стороной квадрата. Далее отметим AG и DH, равные BF, и проведем разрез IG, а также разрез H К из Я перпендикулярно ID. Шесть искомых частей перенумерованы так же, как и на первом рисунке.
Можно заметить, что я сначала привел здесь обратный метод: разрезал три малых квадрата на шесть частей, из которых можно сложить большой квадрат. В случае нашей головоломки мы можем действовать следующим образом.
Возьмем LM равным половине диагонали ОN. Проведем прямую NM и опустим из L перпендикуляр на NM. Тогда LP будет равно стороне всех трех квадратов, сумма площадей которых равна площади большого квадрата QNLO. Читатель сможет теперь без труда вырезать шесть искомых частей, перенумерованных на первом рисунке.
85. Читателю может прийти в голову, что история о медведе на Северном полюсе не имеет никакого отношения к изложенной далее головоломке. На самом деле это не так. Одиннадцать медведей невозможно расположить таким образом, чтобы они образовали семь рядов по четыре медведя в каждом. Но другое дело, когда капитан Лонгбау сообщает нам, что «оказалось семь рядов по четыре медведя в каждом».
Ибо если расположить их так, как показано на рисунке, чтобы три медведя оказались на одной прямой с Северным полюсом, то на каждой из семи прямых действительно будет по четыре животных. На решение задачи не влияет, очевидно, тот факт, имеет ли этот седьмой ряд в длину сотню миль или сотню футов, лишь бы он был прямым – обстоятельство, которое капитан, быть может, проверил с помощью своего карманного компаса.
86. Требовалось показать, как житель города А мог бы посетить каждый город ровно по одному разу и закончить свое путешествие в Z. Эта головоломка содержит маленький трюк. После того как читатель докажет, к своему удовлетворению, что головоломка неразрешима при условиях, как он понял их первоначально, ему следует внимательно изучить букву формулировки, дабы найти в ней брешь.
Было сказано: «Это было бы нетрудно сделать, если бы он мог пользоваться не только железными, но и шоссейными дорогами, однако это исключено». Далее, хотя и запрещается пользоваться шоссейными дорогами, но ничего не сказано про море! Если мы вновь внимательно изучим карту, то заметим, что два города расположены на побережье. Достигнув одного из этих городов, он садится на судно, совершающее прибрежное плавание, и прибывает в другой порт. Полный путь показан на рисунке жирной линией. (См. также решение задачи 94.)
87. Решение таково. Вы, конечно, можете принять предложение «попытаться сделать это за 20 шагов», но потерпите неудачу. Наименьшее возможное число шагов 26. Передвигайте вагоны так, чтобы они занимали последовательно следующие положения:
Всего – 26 шагов.
88. Наименьшее возможное число яиц, которое миссис Коуви могла взять с собой на рынок, равно 719. После того как она продала половину этого числа и отдала сверх того пол-яйца, у не оставалось 359 яиц; после второй операции осталось 239 яиц; после третьей – 179, а после четвертой – 143 яйца. Это количество она смогла разделить поровну между своими 13 друзьями, дав каждому из них по 11 яиц. При всех этих операциях она не повредила ни одного яйца.
89. Два слова, дающие решение нашей головоломки, – это BLUEBELL (колокольчик) и PEARTREE (грушевое дерево). Расположите буквы следующим образом: ВЗ – 1, L6 – 8, U5 – 3, Е4 – 6, В7 – 5, Е2 – 4, L9 – 7, L9 – 2. Это означает, что вы берете В, прыгаете с 3 на 1 и выписываете букву В на месте 1 и т. д. Второе слово можно выписать в том же порядке. Решение зависит от выбора слова, у которого вторая буква совпадает с восьмой, а четвертая – с шестой, поскольку эти буквы можно менять местами, не нарушая соответствующее слово. Слово MARITIMA (морская гвоздика) тоже подошло бы, если бы оно было словом английского языка.
90. Вот как следует расположить семь человек.
Разумеется, за круглым столом А будет соседом человека, указанного в конце строки.
Первоначально я сформулировал эту задачу для 6 человек и 10 дней. Разумеется, легко видеть, что максимальное число расположений для
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.