Кентерберийские головоломки - [70]

Шрифт
Интервал

человек равна (n – 1) (n – 2)/2. Эрнст Бергольт первым обнаружил сравнительно простой метод решения для всех случаев, где п равно простому числу +1. Затем я указал способ построения решения для 10 человек, опираясь на который, Е. Д. Бьюли нашел общий метод для любых четных чисел. Нечетные числа, однако, оказались крайне трудными, и единственными нечетными числами, с которыми удалось справиться, были 7 (приведен выше), 5, 9, 17 и 33, причем четыре последних равны некой степени 2 плюс 1. Наконец, хотя и не без больших трудностей, я нашел некий тонкий метод решения для всех случаев и выписал схемы для всех чисел до 25 включительно. Для случая 11 решение получил также У. Наш, Быть может, читатель испытает свои способности в случае 13. Он обнаружит, что это необычайно крепкий орешек.


91. Существует 12 способов расположения коробок без учета рисунков. Если бы все 13 рисунков были различны, то ответ оказался бы равен 93 312, Но поскольку в некоторых случаях коробки можно переставлять, не меняя расположения рисунков, число способов уменьшается на 1728, и, следовательно, коробки в соответствий с условиями можно расположить 91 584 способами. Я предоставляю моим читателям выяснить самостоятельно, как получаются эти числа.


92. Число способов, которыми можно разместить четырех поросят по 36 свинарникам в соответствии с заданными условиями равно 17, включая приведенный мною пример и не считая новыми расположения, полученные из данных с помощью поворотов и отражений. Яниш в своей книге Analyse Mathйmatique au jeu des Echecs (1862 г.) утверждает, что существует ровно 21 решение небольшой задачи, на которой основана данная головоломка. Поскольку я сам нашел только 17, то я вновь изучил этот вопрос и обнаружил, что он ошибается, несомненно, засчитав решения, полученные с помощью поворотов и отражений, за новые.

Вот 17 ответов. Цифры обозначают горизонтали, а их положение показывает вертикали. Так, например, 104 603 означает, что мы помещаем поросенка в первую строку и первый столбец, никого не помещаем во второй столбец, помещаем другого поросенка в четвертую строку и третий столбец, третьего – в шестую строку и четвертый столбец, никого – в пятый столбец, четвертого поросенка мы помещаем в третью строку и шестой столбец. Размещение Е я привел, формулируя условия:

A 104 603

В 136 002

С 140502

D 140 520

Е 160 025

F 160304

G 201 405

H 201 605

I 205104

J 206 104

К 241005

L 250014

M 250630

Н 260015

О 261005

С 261040

Q 306 104

Можно заметить, что М и Q полусимметричны относительно центра и, следовательно, с помощью поворотов и отражений породят лишь по 2 расположения каждое, что Я четвертьсимметрично и породит лишь 4 расположения, тогда как 14 других расположений породят с помощью поворотов и отражений по 8 расположений каждое. Следовательно, поворачивая и отражая данные 17 расположений, мы получим всего (2×2) + (4×1) + (8×14) = 120 способов.

Трех поросят можно поместить так, чтобы каждый свинарник располагался на одной прямой с поросенком при условии, что поросятам не запрещается располагаться на одной прямой с другими; но имеется только один способ сделать это (не считая поворотов и отражений), а именно: 105030.


93. Расположите кубики и знаки умножения следующим образом: 915×64 и 732×80; в обоих случаях произведение окажется равным максимально возможному числу 58 600.


94. Наименьшее возможное число ходов равно 22, то есть И для лис и 11 для гусей. Вот одно из решений головоломки:



Разумеется, читатель должен сделать первый ход, указанный в «числителе» первой «дроби», затем ход, указанный в «знаменателе», затем ход, указанный в числителе второй дроби, и т. д. Я применю здесь мой метод «пуговиц и веревочек». На диаграмме А данная головоломка представлена на куске шахматной доски с шестью конями.



Сравнение с рисунком из условия показывает, что там я избавил себя от необходимости объяснять неискушенному читателю, как ходит шахматный конь, проведя прямые, показывающие эти ходы. Так что эти две головоломки практически одно и то же, но в разных одеждах. Далее, сравнив рисунок из условия с диаграммой Б, можно заметить, что, расцепив «веревочки», соединяющие кружки, я упростил диаграмму, не изменив существенные соотношения между «пуговицами», или кружками. Читатель теперь без труда сам установит, что требуется 11 ходов для лис и 11 для гусей. Он заметит, что гусь с 1 или 3 должен ходить на 8, дабы избежать соседства с лисой и позволить лисе с 11 перейти на кольцо. Если мы пойдем 1–8, то ясно, что для лис лучше ходить 10 – 5, а не 12 – 5, когда все окажутся на окружности, то им нужно просто прогуляться вдоль нее по часовой стрелке, позаботившись сделать последними ходы 8–3 и 5 – 12. Таким образом, с помощью этого метода наша головоломка становится невероятно простой. (См. также замечание по поводу решения задачи 13.)


95. На рисунке показано, как из найденной доски можно вырезать два куска, из которых удается сложить квадратную крышку стола. А, B, С, D – углы стола. Способ, каким кусок Е вставляется в кусок F, должен быть очевидным для читателя. Заштрихованная часть удаляется.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Наша математическая вселенная

Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.