Кентерберийские головоломки - [15]

Шрифт
Интервал



Однажды, когда стрелки из лука несколько притомились, сэр Хьюг де Фортибус сказал:

– Доблестные лучники! Как говорится, только стрела дурака скора, но, думается мне, среди вас не найдется и одного, кто сумел бы расставить числа на мишени заново так, чтобы сумма чисел, расположенных вдоль каждой из двенадцати прямых, равнялась не двадцати двум, а двадцати трем.

Переставить числа от 1 до 19 так, чтобы сумма вдоль каждой прямой равнялась 23, – это захватывающая головоломка. Половина этих прямых совпадает со сторонами, а половина – с радиусами.


36. Окно темницы. Однажды сэр Хьюг весьма озадачил своего главного зодчего. Он подвел этого достойного человека к стене темницы и указал на окно.

– Думается мне, – сказал он, – что вон то квадратное окно имеет сторону в один фут, а узкие прутья делят его на четыре просвета со стороной в полфута.

– Воистину так, сэр Хьюг.

– Я хочу, чтобы повыше было сделано другое окно, у которого каждая сторона тоже равнялась бы одному футу, но его следует разделить прутьями на восемь просветов, у которых все стороны были бы равны между собой.



– Но, сэр Хьюг, – сказал озадаченный строитель, – я не знаю, как это сделать.

– Клянусь пресвятой Девой, – воскликнул сэр Хьюг с наигранным гневом. – Мое желание должно быть исполнено! Я буду считать тебя жалким ремесленником, если ты не сделаешь такое окно, как мне нужно.

Стоит отметить, что сэр Хьюг пренебрегал толщиной железных прутьев.


37. Крест и полумесяц. Возвратясь из Святой Земли, родственник сэра Хьюга, сэр Джон де Колинхем, привез с собой знамя с изображением полумесяца, который вы видите на рисунке. Окружающие заметили, что сэр Хьюг де Фортибус проводит много времени за изучением этого полумесяца, сравнивая его с крестом на знамени крестоносцев. Однажды в присутствии всей честной компании сэр Хьюг сказал поразившую всех вещь:



– Друзья мои, я много думал последнее время о превращении полумесяца в крест, и это привело меня к открытию, которое не могло не восхитить меня до чрезвычайности, ибо то, что я сейчас сообщу вам, прямо-таки носит глубоко символический характер. Во сне меня осенило, как этот вражеский полумесяц можно точно превратить в крест на нашем знамени. Это добрый знак – нас ждет удача в Святой Земле.

Затем сэр Хьюг де Фортибус объяснил, что полумесяц на одном из знамен можно разрезать на куски, из которых удается сложить точно такой же правильный крест, как и на другом знамени. Это довольно удивительно, и я покажу, как можно проделать такую операцию с десятью кусками, используя каждый из них. Флаг одинаков с обеих сторон, так что части в случае необходимости можно переворачивать другой стороной кверху.


38. Амулет. Однажды во дворе замка был замечен посторонний человек, и домочадцы, обнаружив, что он говорит с каким-то акцентом, заподозрили в нем шпиона. Неизвестный был схвачен и приведен к сэру Хьюгу, но тот ничего не сумел от него добиться. Тогда сэр Хьюг повелел обыскать человека и посмотреть, нет ли у него каких-нибудь секретных записей. В самом деле, в воротнике неизвестного был обнаружен кусок пергамента, содержавший следующую странную надпись:



Сегодня мы знаем, что Абракадабра был верховным божеством ассирийцев и что в Европе столь странное расположение букв этого слова принято было носить в качестве амулета, предохраняющего от всяких несчастий. Однако сэр Хьюг никогда не слышал об этом и, считая документ важным, послал за поднаторевшим в науках священником.

– Прошу вас, ваше преподобие, – сказал он, – растолкуйте мне истинный смысл этой странной надписи.

– Сэр Хьюг, – ответил священник, переговорив на каком-то языке с задержанным человеком, – сие всего лишь амулет, который этот несчастный носил от всякой хвори, зубной боли и других телесных недугов.

– Тогда дайте ему пищу, одеяние и отпустите на все четыре стороны, – сказал сэр Хьюг. – Кстати, ваше преподобие, не могли бы вы сказать, сколькими способами на этом амулете можно прочитать слово ABRACADABRA, всегда начиная с верхнего А?

Поставьте ваш карандаш на верхнее А и подсчитайте, сколькими различными способами можно, двигаясь вниз, прочитать это слово, переходя всегда от данной буквы к соседней.


39. Улитка на флагштоке. Порой полезно проследить, откуда ведут свое начало многие широко известные головоломки. Нередко оказывается, что некоторые из головоломок были придуманы очень давно, и явно видно, как одни из них с течением времени совершенствовались, тогда как другие, наоборот, портились, а порой попросту утратили свою первоначальную идею. Так, в архиве Солвэмхолла обнаружилась наша добрая знакомая, головоломка о взбирающейся улитке, о которой можно сказать, что в своей современной форме она потеряла первоначальную тонкость.



Однажды по случаю большого праздника в замке были подняты все флаги. Сэр Хьюг лично проверял, как это сделано, когда кто-то указал ему на забавную улитку, которая взбиралась вверх по флагштоку. Один немолодой мудрый человек заметил:

– Говорят, сэр рыцарь, хотя я сам считаю такие вещи пустыми россказнями, что улитка днем поднимается на три фута вверх, а ночью соскальзывает на два фута вниз.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.