Кентерберийские головоломки - [16]

Шрифт
Интервал

– Тогда, – ответил сэр Хьюг, – скажите, сколько дней потребуется улитке, чтобы подняться от основания до верхушки этого шеста.

– Клянусь хлебом и водой, я был бы весьма удивлен, если бы удалось получить ответ, не зная высоты шеста.

– Поверьте мне, – ответил рыцарь, – что измерять шест вовсе не нужно.

Сможет ли читатель ответить на этот вариант хорошо нам известной головоломки?


40. Шкатулка леди Изабеллы. Юную родственницу сэра Хьюга, опекуном которой он был, леди Изабеллу де Фитцарнульф, часто называли Изабеллой Прекрасной. Ее драгоценности хранились в шкатулке, верхняя крышка которой имела форму правильного квадрата. Она была инкрустирована деревом драгоценных пород и золотой полоской длиной в 10 и шириной в >1/>4дюйма.



Каждому претенденту на руку леди Изабеллы сэр Хьюг обещал дать свое согласие лишь в том случае, если он сумеет определить размеры крышки этой шкатулки, располагая следующими данными: прямоугольная золотая полоска на крышке имеет размер 10 X >1/>4дюйма; оставшаяся часть крышки выложена кусочками дерева, которые имеют форму правильных квадратов, причем никакие два из них не имеют одинаковых размеров.

Многие молодые люди потерпели неудачу, но в конце концов одному из них удалось решить эту головоломку. Она не из легких, но размеры полоски вместе с другими условиями однозначно определяют размеры крышки у шкатулки.

Веселые монахи Ридлуэла

– Брат Эндрю, – сказал старый аббат, умирая, – думается мне, что я мог бы поведать тебе теперь головоломку из головоломок… И у меня было… время… и…

Добрый монах приблизил ухо к святым устам, но, увы, они замолкли навсегда. Так отлетела прочь жизнь веселого и горячо любимого аббата старинного монастыря Ридлуэл.

Монахи аббатства Ридлуэл были известны в свое время своим пристрастием к причудливым загадкам и головоломкам. Аббатство было построено в четырнадцатом веке близ святого источника, носившего название Редхил-Уэл (Источник Красного холма). На языке местных жителей оно превратилось в Редлуэл и Ридлуэл, а при аббате Дэвиде монахи, надо думать, все сделали для того, чтобы закрепить последнюю форму – было придумано немало хороших загадок.[13] Придумывание и решение головоломок было любимым времяпрепровождением в аббатстве. Загадки в одинаковой мере могли принадлежать и к области метафизики, и к математике или механике. Головоломки превратились у монахов во всепоглощающую страсть, и, как вы видели, самого аббата эта страсть не покинула даже на смертном одре.

Для монахов Ридлуэла не существовало слов «задача», «проблема», «головоломка». Любую задачу они называли «загадкой» независимо от того, был ли это вопрос «где находился Моисей, когда померк свет?» или речь шла о квадратуре круга. На стене трапезной были начертаны слова Самсона: «Сейчас я задам вам загадку», дабы напомнить братии, чего от нее ждут. Правило состояло в том, что каждый монах по очереди должен был задать всей общине еженедельную загадку, остальные вольны были при желании добавить к ней еще одну. Аббат Дэвид был, вне всякого сомнения, головоломным гением монастыря, и все, естественно, склонялись перед введенным им уставом. Однако история сохранила лишь немногие из загадок аббатства, и я решил выбрать те из них, которые мне показались наиболее интересными. Я постарался сделать условия головоломок совершенно ясными, чтобы современный читатель смог понять их и получить удовольствие от решения.


41. Рыбы и корзинки. Недалеко от аббатства находился небольшой пруд, где водилась рыба. Монахи обычно проводили здесь немало часов в созерцании своих удочек. Однажды, когда рыба упорно «не шла» и монахи все вместе поймали лишь 12 рыбешек, брат Джонатан вдруг заявил, что взамен неудачной ловли он хочет предложить загадку. С этими словами он взял 12 корзинок для рыбы и расставил их на равных расстояниях друг от друга вокруг пруда, как показано на рисунке, причем в каждой корзине лежало по рыбке.



– Теперь, любезные братья, – сказал он, – решите загадку о двенадцати рыбках. Можете начать с любой корзинки: возьмите одну рыбку и, двигаясь в одном направлении вокруг пруда, пронесите ее над двумя другими рыбками и бросьте в следующую корзину. Затем снова возьмите другую рыбку, пронеся ее над двумя рыбками, положите в корзину и так продолжайте до тех пор, пока не переложите шесть рыбок. Когда это будет сделано, в шести корзинках должно оказаться по две рыбки, а шесть корзинок должны быть пустыми. Который из ваших веселых умов изловчится, чтобы обойти при этом вокруг пруда наименьшее число раз?

Я хочу пояснить читателю, что не играет роли, где лежат две рыбки, над которыми проносится третья, в одной или в разных корзинах, а также сколько пустых корзин вам придется при этом миновать. Но вы непременно, как сказал брат Джонатан, все время должны двигаться вокруг пруда в одном направлении (без обратных перемещений) и кончить на том же месте, с которого начали.


42. Размещение паломников. Однажды за трапезой аббат объявил, что прибывший утром гонец предупредил о приближении группы паломников, которая рассчитывает на приют в монастыре.

– Их следует разместить, – сказал он, – в квадратном помещении, имеющем два этажа по восемь келий. Причем на каждой стороне здания должно спать по одиннадцать человек и на втором этаже их должно быть вдвое больше, чем на первом. Разумеется, люди должны находиться в каждой келье и, вы знаете мое правило, в каждой келье может жить не более трех человек.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Математический аппарат инженера

Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.


Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.