Как не ошибаться. Сила математического мышления - [15]
Вы можете сыграть в ту же игру с описанным восьмиугольником, площадь которого равна 8(√2 – 1), немногим более 3,31.
Таким образом, площадь круга находится в пределах от 2,83 до 3,31.
Но зачем останавливаться на этом? Вы можете обозначить на окружности точки, равноудаленные от вершин восьмиугольника (вписанного или описанного), – и получите шестнадцатиугольник; дополнительные тригонометрические расчеты покажут, что площадь круга находится в пределах от 3,06 до 3,18. Проведите процедуру еще раз, чтобы получить 32-угольник, а затем повторите снова и снова – и вскоре получите нечто похожее на такую фигуру.
Но разве это не окружность? Разумеется, нет! Это правильный многоугольник с 65 536 сторонами! Неужели вы не видите?
Великое озарение Евдокса и Архимеда состоит в том, что на самом деле не имеет значения, что это за фигура – окружность или многоугольник с очень большим количеством очень коротких сторон. Площади этих двух фигур достаточно близки для любых возможных целей. Площадь небольшой области между окружностью и многоугольником была «исчерпана» в процессе нашего неутомимого последовательного приближения. Да, окружность – это кривая, это действительно так. Но каждый крохотный фрагмент этой кривой можно приблизить к идеально прямой линии, подобно тому как крохотный кусочек поверхности Земли, на котором мы стоим, приближен к идеально ровной плоскости[39].
Следует запомнить девиз: локально прямая, глобально кривая.
Или лучше представьте: вы мчитесь по направлению к окружности с большой высоты; сначала вы видите всю окружность;
затем только один сегмент дуги окружности;
а затем еще более мелкий сегмент.
Продолжайте это до тех пор, пока, приближаясь все больше и больше, вы не увидите нечто напоминающее прямую линию. Ползущему по кругу муравью, видящему лишь пространство, непосредственно его окружающее, представляется, будто он ползет по прямой. Точно так же человеку, стоящему на поверхности Земли, кажется, что он стоит на плоскости (если только он не окажется настолько проницательным, что обратит внимание, как на горизонте поднимаются приближающиеся издалека объекты).
Суть математического анализа, изложенного на одной странице
Теперь я хочу объяснить вам суть математического анализа. Готовы? Вот идея, за которую мы должны благодарить Исаака Ньютона: в идеальном круге нет ничего особенного. Каждая гладкая кривая при достаточном увеличении масштаба напоминает прямую линию[40]. Не имеет значения, насколько изогнута или закручена эта кривая, – главное, что у нее нет острых углов.
Когда вы запускаете ракету, траектория ее перемещения выглядит так.
Ракета сначала движется вверх, а затем вниз, образуя параболическую дугу. Сила тяжести изгибает любую траекторию движения по направлению к поверхности Земли; это один из самых фундаментальных законов нашей физической жизни. Но, если мы увеличим масштаб и рассмотрим очень короткий отрезок этой кривой, она будет выглядеть так.
Затем так.
Как и в случае окружности, траектория движения ракеты кажется прямой линией, направленной вверх под определенным углом. Безусловно, эта линия отклоняется под действием силы тяжести, но подобное отклонение слишком незначительно, чтобы увидеть его невооруженным глазом. Приближение к еще более мелкому участку кривой делает линию еще больше похожей на прямую. Чем больше приближение, тем ровнее участок кривой.
А теперь сделаем концептуальный скачок. Ньютон сказал: послушайте, давайте пойдем до конца. Уменьшайте поле зрения до тех пор, пока оно не станет бесконечно малой величиной – настолько малой, что она будет меньше любого размера, который вы можете назвать, но все же не равной нулю. Вы изучаете траекторию движения ракеты не на протяжении очень короткого периода, а в один момент времени. В таком случае то, что было почти прямой линией, становится в точности прямой. Наклон этой кривой Ньютон называл флюксией, а мы называем производной.
Именно этот скачок не был готов совершить Архимед. Он понимал, что многоугольники с более короткими сторонами все более и более приближаются к окружности, но он никогда не говорил о том, что в действительности окружность представляет собой многоугольник с бесконечно большим количеством бесконечно малых сторон.
Некоторые современники Ньютона также не разделяли его точку зрения. Наиболее активно возражал Ньютону Джордж Беркли, который критиковал концепцию бесконечно малых величин Ньютона в крайне издевательском тоне{23}, как, к сожалению, сейчас уже не пишут в математической литературе:
А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками (ghosts) исчезнувших величин?[41]
Тем не менее исчисление бесконечно малых все-таки работает. Если вы раскрутите привязанный к веревке камень над головой, а затем резко отпустите его, он улетит по прямолинейной траектории с постоянной скоростью[42] в направлении, в котором, согласно расчетам, он движется в тот момент, когда вы его отпускаете. Это еще одна идея Ньютона: движущиеся объекты склонны перемещаться по прямолинейной траектории, если какая-то другая сила не заставляет объект отклоняться в ту или иную сторону. Это и есть одна из причин, почему линейное мышление настолько естественно для нас: интуитивное восприятие времени и движения формируется у нас под воздействием явлений, которые мы наблюдаем в окружающем мире. Еще до того, как Ньютон сформулировал свои законы, мы, люди, в глубине души знали, что все вокруг нас стремится двигаться по прямой, если только нет причин двигаться иначе.
День 4 ноября 1922 года стал одним из величайших в истории мировой археологии. Именно тогда знаменитый египтолог Говард Картер и лорд Карнарвон, финансировавший раскопки, обнаружили гробницу фараона Тутанхамона, наполненную бесценными сокровищами Однако для членов экспедиции этот день стал началом кошмара. Люди, когда-либо спускавшиеся в усыпальницу, погибали один за другим. Газеты принялись публиковать невероятные материалы о древнем египетском демоне, мстящем археологам за осквернение гробницы…В своей увлекательной книге известные исследователи исторических аномалий Коллинз и Огилви-Геральд подробно изложили хронологию открытия гробницы Тутанхамона и связанных с этим загадочных событий Основываясь на письмах и статьях знаменитых археологов, а также воспоминаниях очевидцев, авторы задаются сенсационным вопросом: не могли ли Говард Картер и лорд Карнарвон обнаружить в гробнице Тутанхамона некую взрывоопасную тайну, способную в случае огласки перевернуть сложившиеся взгляды на библейскую и мировую историю? И не могла ли эта тайна стать для первооткрывателей усыпальницы реальным проклятием — осуществляемым не мстительными богами Египта, а наемными убийцами на службе влиятельных политических сил, которым могла помешать неудобная правда?
Земная цивилизация достигла критического порога, и потеря людьми интереса к космосу лишь вершина айсберга. Первые космические программы имели ясную цель, объявленную Циолковским: расселение человечества по Солнечной системе. Сейчас цель потеряна как для развития космонавтики, так и для человечества в целом. Оно должно сдать экзамен на разумность и обеспечить себе переход на новую ступень развития.(«Техника-молодежи», № 8/2004)
Азию мы называем Азией, а Антарктиду – Антарктидой. Вот Фарерские острова, но нам лучше на Канарские. Слова, известные со школы, звучат, будто музыка: Гренландия и Исландия, Миссури и Ориноко, Босфор и Дарданеллы. С чем и с кем связано то или иное географическое название – кто так назвал, когда и почему? Знать бы! И удивлять других: «Кстати, о Миссисипи…»Эта книга раскрывает многие историко-географические тайны. Рассказы о происхождении названий географических объектов часто оказываются посильнее детективных романов.
Настоящее пособие знакомит учителей физической культуры с нормами санитарно-гигиенического режима, мерами пожарной безопасности на уроках физкультуры. В нем представлены нормативные акты, формы документов, извлечения из методических указаний, правил и инструкций по охране труда, регламентирующие безопасность проведения физкультурно-оздоровительной, учебной и внеклассной работы в образовательных учреждениях; показан порядок и правила проведения инструктажей по мерам безопасности.Пособие предназначено для студентов, преподавателей, учителей физической культуры и школьников.
Эта книга о наших детях, о происшествиях и явлениях, связанных с ними и выходящих за рамки традиционного мировосприятия.Вас, уважаемый читатель, ждут встречи с героями невероятных историй, удивительными людьми, участниками и очевидцами феноменальных событий, необъяснимых с точки зрения логики и «приземленного» мышления.Также вы получите возможность побывать в гостях у известной духовной целительницы Зины Ивановны, побеседовать с ней, вместе проанализировать почерпнутую информацию. Эта необычная женщина будет комментировать те удивительные истории, которые рассказаны на этих страницах.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.